浮动执行价格回望看涨期权定价公式推导

浮动执行价格回望看涨期权定价公式推导

期权收益与定价公式

V = e^{-rT} \mathbb{E}^Q [S(T) - \min(z, S_{\min})] = e^{-rT} \mathbb{E}^Q [S(T)] - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})]
V=erTEQ[S(T)min(z,Smin)]=erTEQ[S(T)]erTEQ[min(z,Smin)]V = e^{-rT} \mathbb{E}^Q [S(T) - \min(z, S_{\min})] = e^{-rT} \mathbb{E}^Q [S(T)] - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})]

计算 \mathbb{E}^Q [\min(z, S_{\min})]EQ[min(z,Smin)]\mathbb{E}^Q [\min(z, S_{\min})]

P(z \leq x) = \mathrm{N}(-d_x) + \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x)
P(zx)=N(dx)+(xS(0))2μ/σ2N(dx)P(z \leq x) = \mathrm{N}(-d_x) + \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x)

其中:

使用期望公式:

\mathbb{E}[\min(z, L)] = L - \int_0^L P(z \leq x) \, dx
E[min(z,L)]=L0LP(zx)dx\mathbb{E}[\min(z, L)] = L - \int_0^L P(z \leq x) \, dx

这是因为 \min(z, L) = L - (L - z)^+min(z,L)=L(Lz)+\min(z, L) = L - (L - z)^+,且 \mathbb{E}[(L - z)^+] = \int_0^L P(z \leq x) \, dxE[(Lz)+]=0LP(zx)dx\mathbb{E}[(L - z)^+] = \int_0^L P(z \leq x) \, dx(对于非负随机变量)。

I = \int_0^L P(z \leq x) \, dx = \int_0^L \mathrm{N}(-d_x) \, dx + \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx
I=0LP(zx)dx=0LN(dx)dx+0L(xS(0))2μ/σ2N(dx)dxI = \int_0^L P(z \leq x) \, dx = \int_0^L \mathrm{N}(-d_x) \, dx + \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx

I_1 = \int_0^L \mathrm{N}(-d_x) \, dxI1=0LN(dx)dxI_1 = \int_0^L \mathrm{N}(-d_x) \, dxI_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dxI2=0L(xS(0))2μ/σ2N(dx)dxI_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx.

计算积分 I_1I1I_1 I_2I2I_2

对于 I_1I1I_1

I_1 = \int_{-\infty}^{\log L} \mathrm{N}(-d_{e^y}) e^y \, dy
I1=logLN(dey)eydyI_1 = \int_{-\infty}^{\log L} \mathrm{N}(-d_{e^y}) e^y \, dy

其中 d_x = \frac{ \log S(0) - y + \mu T }{ \sigma \sqrt{T} }dx=logS(0)y+μTσTd_x = \frac{ \log S(0) - y + \mu T }{ \sigma \sqrt{T} }(因为 x = e^yx=eyx = e^y,所以 \log x = ylogx=y\log x = y)。令 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T,则 d_x = \frac{A - y}{\sigma \sqrt{T}}dx=AyσTd_x = \frac{A - y}{\sigma \sqrt{T}}

I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y \, dy
I1=logLN(yAσT)eydyI_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y \, dy
I_1 = \int_{-\infty}^{\frac{\log L - A}{\sigma \sqrt{T}}} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} \, dz
I1=logLAσTN(z)eA+zσTσTdzI_1 = \int_{-\infty}^{\frac{\log L - A}{\sigma \sqrt{T}}} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} \, dz

步骤1: 表达积分并变量代换

​ 积分:

I_1 = \int_0^L \mathrm{N}(-d_x) \, dx
I1=0LN(dx)dxI_1 = \int_0^L \mathrm{N}(-d_x) \, dx

​ 首先,表达 d_xdxd_x:

d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} }
dx=log(S(0)/x)+μTσT=logS(0)logx+μTσTd_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} }

​ 令 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T,则:

d_x = \frac{A - \log x}{\sigma \sqrt{T}}
dx=AlogxσTd_x = \frac{A - \log x}{\sigma \sqrt{T}}

​ 因此:

\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right)
N(dx)=N(logxAσT)\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right)

​ 所以:

I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx
I1=0LN(logxAσT)dxI_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx

​ 现在进行变量代换。令 y = \log xy=logxy = \log x,则 x = e^yx=eyx = e^ydx = e^y dydx=eydydx = e^y dy。当 xxx 从 0 到 LLLyyy-\infty-\infty\log LlogL\log L。代入:

I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy
I1=logLN(yAσT)eydyI_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy

​ 令 z = \frac{y - A}{\sigma \sqrt{T}}z=yAσTz = \frac{y - A}{\sigma \sqrt{T}},则 y = A + z \sigma \sqrt{T}y=A+zσTy = A + z \sigma \sqrt{T}dy = \sigma \sqrt{T} dzdy=σTdzdy = \sigma \sqrt{T} dz。当 y = -\inftyy=y = -\inftyz = -\inftyz=z = -\infty; 当 y = \log Ly=logLy = \log Lz = z_0 = \frac{\log L - A}{\sigma \sqrt{T}}z=z0=logLAσTz = z_0 = \frac{\log L - A}{\sigma \sqrt{T}}。代入:

I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz
I1=z0N(z)eA+zσTσTdz=σTeAz0N(z)ezσTdzI_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz

c = \sigma \sqrt{T}c=σTc = \sigma \sqrt{T},则:

I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz
I1=σTeAz0N(z)eczdzI_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

步骤2: 计算积分 \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dzz0N(z)eczdz\int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

计算积分:

J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz
J=z0N(z)eczdzJ = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

利用交换积分次序的方法。注意 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dtN(z)=zϕ(t)dt\mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}ϕ(t)=12πet2/2\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} 是标准正态密度函数。因此:

J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz
J=z0(zϕ(t)dt)eczdzJ = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz

交换积分次序:对于固定 tttzzztttz_0z0z_0(因为当 z < tz<tz < t 时,内层积分不贡献)。所以:

J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt
J=z0ϕ(t)(tz0eczdz)dtJ = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt

计算内层积分:

\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right]
tz0eczdz=1c[ecz0ect]\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right]

代入:

J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt
J=1cz0ϕ(t)(ecz0ect)dt=1cecz0z0ϕ(t)dt1cz0ϕ(t)ectdtJ = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt

现在:

\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c)
z0ϕ(t)ectdt=ec2/2z0ϕ(tc)dt=ec2/2N(z0c)\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c)

因此:

J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
J=1c[ecz0N(z0)ec2/2N(z0c)]J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

步骤3: 代入回 I_1I1I_1

代入 JJJI_1I1I_1:

I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
I1=σTeA1c[ecz0N(z0)ec2/2N(z0c)]I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

由于 c = \sigma \sqrt{T}c=σTc = \sigma \sqrt{T},有 \sigma \sqrt{T} / c = 1σT/c=1\sigma \sqrt{T} / c = 1,所以:

I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
I1=eA[ecz0N(z0)ec2/2N(z0c)]I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

现在计算指数项:

代入:

I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right)
I1=eA[LeAN(z0)eσ2T/2N(logLAσ2TσT)]=LN(z0)eA+σ2T/2N(logLAσ2TσT)I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right)

步骤4: 简化表达式

回忆 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T\mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2,所以:

A + \frac{\sigma^2 T}{2} = \log S(0) + \mu T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q) T
A+σ2T2=logS(0)+μT+σ2T2=logS(0)+(rqσ22)T+σ2T2=logS(0)+(rq)TA + \frac{\sigma^2 T}{2} = \log S(0) + \mu T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q) T

因此:

e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T}
eA+σ2T/2=elogS(0)+(rq)T=S(0)e(rq)Te^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T}

另外,z_0 = \frac{\log L - A}{\sigma \sqrt{T}}z0=logLAσTz_0 = \frac{\log L - A}{\sigma \sqrt{T}},所以最终:

I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)
I1=eA+σ2T2N(logLAσ2TσT)LN(logLAσT)I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)

代入 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T,并注意到 \mu = r - q - \sigma^2/2μ=rqσ2/2\mu = r - q - \sigma^2/2,所以 A + \frac{\sigma^2 T}{2} = \log S(0) + (r-q)TA+σ2T2=logS(0)+(rq)TA + \frac{\sigma^2 T}{2} = \log S(0) + (r-q)T

I_1 =  L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1)
I1=LN(d2)S(0)e(rq)TN(d1)I_1 = L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1)

其中:

对于 I_2I2I_2

I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx
I2=0L(xS(0))2μ/σ2N(dx)dxI_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx

其中 d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }dx=log(x/S(0))+μTσTd'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }

I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}\left( \frac{y - \log S(0) + \mu T}{\sigma \sqrt{T}} \right) dy
I2=S(0)2μ/σ2logLey(1+2μ/σ2)N(ylogS(0)+μTσT)dyI_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}\left( \frac{y - \log S(0) + \mu T}{\sigma \sqrt{T}} \right) dy

组合结果

\begin{aligned}
\int_0^L P(z \leq x) \, dx =& I_1 + I_2 \\
=& L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1)   \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
&- \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)
\end{aligned}
0LP(zx)dx=I1+I2=LN(d2)S(0)e(rq)TN(d1)+σ22(rq)(LS(0))2(rq)/σ2S(0)N(d2)σ22(rq)S(0)e(rq)TN(d1)\begin{aligned} \int_0^L P(z \leq x) \, dx =& I_1 + I_2 \\ =& L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) \\ &+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\ &- \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1) \end{aligned}
\mathbb{E}^Q [\min(z, L)] = L - I_1 - I_2 = L - \left[ L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) +   \cdots \right]
EQ[min(z,L)]=LI1I2=L[LN(d2)S(0)e(rq)TN(d1)+]\mathbb{E}^Q [\min(z, L)] = L - I_1 - I_2 = L - \left[ L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) + \cdots \right]

简化后:

\begin{aligned}
\mathbb{E}^Q [\min(z, L)] =& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
\end{aligned}
EQ[min(z,L)]=LN(d2)+S(0)e(rq)TN(d1)[1+σ22(rq)]σ22(rq)(LS(0))2(rq)/σ2S(0)N(d2)\begin{aligned} \mathbb{E}^Q [\min(z, L)] =& L \mathrm{N}(d_2)\\ &+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\ &- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\ \end{aligned}

贴现并得期权价值

\begin{aligned}
e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] = e^{-rT} [ & \\ 
& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
]
\end{aligned}
erTEQ[min(z,Smin)]=erT[LN(d2)+S(0)e(rq)TN(d1)[1+σ22(rq)]σ22(rq)(LS(0))2(rq)/σ2S(0)N(d2)]\begin{aligned} e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] = e^{-rT} [ & \\ & L \mathrm{N}(d_2)\\ &+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\ &- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\ ] \end{aligned}

简化:

\begin{aligned}
= & e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
\end{aligned}
=erTLN(d2)+S(0)eqTN(d1)[1+σ22(rq)]σ22(rq)(LS(0))2(rq)/σ2erTS(0)N(d2)\begin{aligned} = & e^{-rT}L \mathrm{N}(d_2)\\ &+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\ &- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\ \end{aligned}
V = e^{-qT} S(0)N(d_1) - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})]
V=eqTS(0)N(d1)erTEQ[min(z,Smin)]V = e^{-qT} S(0)N(d_1) - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})]

所以:

\begin{aligned}
V = e^{-qT} S(0) - [ & \\
& e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
]
\end{aligned}
V=eqTS(0)[erTLN(d2)+S(0)eqTN(d1)[1+σ22(rq)]σ22(rq)(LS(0))2(rq)/σ2erTS(0)N(d2)]\begin{aligned} V = e^{-qT} S(0) - [ & \\ & e^{-rT}L \mathrm{N}(d_2)\\ &+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\ &- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\ ] \end{aligned}

注意到 1 - \mathrm{N}(-d_1) = \mathrm{N}(d_1)1N(d1)=N(d1)1 - \mathrm{N}(-d_1) = \mathrm{N}(d_1),所以:

\begin{aligned}
V =& e^{-qT} S(0)N(d_1) -  e^{-rT}L \mathrm{N}(d_2)\\
&- S(0) e^{-qT} \mathrm{N}(-d_1)  \frac{\sigma^2}{2(r-q)} \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\

\end{aligned}
V=eqTS(0)N(d1)erTLN(d2)S(0)eqTN(d1)σ22(rq)+σ22(rq)(LS(0))2(rq)/σ2erTS(0)N(d2)\begin{aligned} V =& e^{-qT} S(0)N(d_1) - e^{-rT}L \mathrm{N}(d_2)\\ &- S(0) e^{-qT} \mathrm{N}(-d_1) \frac{\sigma^2}{2(r-q)} \\ &+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\ \end{aligned}

代入S_{min}=LSmin=LS_{min}=L,得到

\begin{aligned}
V = & e^{-qT} S(0) \mathrm{N}(d_1) - e^{-rT} S_{\min} \mathrm{N}(d_2) \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{S_{\min}}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT} S(0) \mathrm{N}(d_2') \\ 
&- \frac{\sigma^2}{2(r-q)} e^{-qT} S(0) \mathrm{N}(-d_1)
\end{aligned}
V=eqTS(0)N(d1)erTSminN(d2)+σ22(rq)(SminS(0))2(rq)/σ2erTS(0)N(d2)σ22(rq)eqTS(0)N(d1)\begin{aligned} V = & e^{-qT} S(0) \mathrm{N}(d_1) - e^{-rT} S_{\min} \mathrm{N}(d_2) \\ &+ \frac{\sigma^2}{2(r-q)} \left( \frac{S_{\min}}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT} S(0) \mathrm{N}(d_2') \\ &- \frac{\sigma^2}{2(r-q)} e^{-qT} S(0) \mathrm{N}(-d_1) \end{aligned}

这正是公式(8.30)。

其中

d_1=\frac{\log (\frac{S(0)}{S_{min}})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma 
\sqrt{T}},\quad d_2=d_1-\sigma\sqrt{T}
d1=log(S(0)Smin)+(rq+12σ2)TσT,d2=d1σTd_1=\frac{\log (\frac{S(0)}{S_{min}})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma \sqrt{T}},\quad d_2=d_1-\sigma\sqrt{T}
d_1'=\frac{\log (\frac{S_{min}}{S(0)})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma 
\sqrt{T}},\quad d_2'=d_1-\sigma\sqrt{T} 
d1=log(SminS(0))+(rq+12σ2)TσT,d2=d1σTd_1'=\frac{\log (\frac{S_{min}}{S(0)})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma \sqrt{T}},\quad d_2'=d_1-\sigma\sqrt{T}

总结

此推导展示了如何将理论概率工具应用于金融衍生品定价。

证明E[(L−z)^+]=∫_0^LP(z≤x)dxE[(Lz)+]=0LP(zx)dxE[(L−z)^+]=∫_0^LP(z≤x)dx

推导步骤

  1. 定义非负随机变量: 令 Y = (L - z)^+ = \max(L - z, 0)Y=(Lz)+=max(Lz,0)Y = (L - z)^+ = \max(L - z, 0)。由于 zzz 是非负随机变量(在期权定价上下文中,zzz 是资产价格的最小值,因此 z \geq 0z0z \geq 0),所以 YYY 也是非负随机变量。
  2. 利用非负随机变量的期望公式: 对于任何非负随机变量 YYY,其期望可以表示为:
E[Y] = \int_0^\infty P(Y > y) \, dy
E[Y]=0P(Y>y)dyE[Y] = \int_0^\infty P(Y > y) \, dy

这个公式是概率论中的标准结果,可以通过交换积分次序证明(例如,使用 Fubini 定理)。

  1. 确定积分上限

    由于 Y = (L - z)^+ \leq LY=(Lz)+LY = (L - z)^+ \leq L(因为 z \geq 0z0z \geq 0,所以 L - z \leq LLzLL - z \leq L,且取正部后 Y \leq LYLY \leq L),因此当 y > Ly>Ly > L 时,P(Y > y) = 0P(Y>y)=0P(Y > y) = 0。这意味着积分上限可以从 \infty\infty 改为 LLL

E[Y] = \int_0^L P(Y > y) \, dy
E[Y]=0LP(Y>y)dyE[Y] = \int_0^L P(Y > y) \, dy
  1. 计算 P(Y > y)P(Y>y)P(Y > y)

    事件 Y > yY>yY > y 等价于 (L - z)^+ > y(Lz)+>y(L - z)^+ > y。由于 y \geq 0y0y \geq 0,这可以分解为:

(L - z)^+ > y \iff L - z > y \quad \text{(因为如果 } L - z \leq 0, \text{ 则 } (L - z)^+ = 0 \leq y \text{)}
(Lz)+>y    Lz>y(因为如果 Lz0, 则 (Lz)+=0y(L - z)^+ > y \iff L - z > y \quad \text{(因为如果 } L - z \leq 0, \text{ 则 } (L - z)^+ = 0 \leq y \text{)}

​ 因此,P(Y > y) = P(L - z > y) = P(z < L - y)P(Y>y)=P(Lz>y)=P(z<Ly)P(Y > y) = P(L - z > y) = P(z < L - y)

  1. 变量代换

    x = L - yx=Lyx = L - y,则当 yyy 从 0 到 LLL 时,xxxLLL 到 0。同时,dy = -dxdy=dxdy = -dx。代入积分:

E[Y] = \int_0^L P(z < L - y) \, dy = \int_{x=L}^{x=0} P(z < x) (-dx) = \int_0^L P(z < x) \, dx
E[Y]=0LP(z<Ly)dy=x=Lx=0P(z<x)(dx)=0LP(z<x)dxE[Y] = \int_0^L P(z < L - y) \, dy = \int_{x=L}^{x=0} P(z < x) (-dx) = \int_0^L P(z < x) \, dx

​ 这里,积分上下限交换时,负号被抵消。

  1. 处理概率相等问题

    在期权定价上下文中,zzz 通常是连续随机变量(例如,几何布朗运动的最小值),因此有 P(z < x) = P(z \leq x)P(z<x)=P(zx)P(z < x) = P(z \leq x),因为连续随机变量在一点的概率为零。因此:

E[Y] = \int_0^L P(z \leq x) \, dx
E[Y]=0LP(zx)dxE[Y] = \int_0^L P(z \leq x) \, dx

​ 即:

E[(L - z)^+] = \int_0^L P(z \leq x) \, dx
E[(Lz)+]=0LP(zx)dxE[(L - z)^+] = \int_0^L P(z \leq x) \, dx

## 在期权定价中的应用

在第2张图片中,浮动执行价格回望看涨期权的收益涉及 \min(z, S_{\min})min(z,Smin)\min(z, S_{\min}),其中 S_{\min}SminS_{\min} 是历史最小值。注意到:

\min(z, S_{\min}) = S_{\min} - (S_{\min} - z)^+
min(z,Smin)=Smin(Sminz)+\min(z, S_{\min}) = S_{\min} - (S_{\min} - z)^+

因此,期望为:

E[\min(z, S_{\min})] = S_{\min} - E[(S_{\min} - z)^+]
E[min(z,Smin)]=SminE[(Sminz)+]E[\min(z, S_{\min})] = S_{\min} - E[(S_{\min} - z)^+]

利用上述结果,有:

E[\min(z, S_{\min})] = S_{\min} - \int_0^{S_{\min}} P(z \leq x) \, dx
E[min(z,Smin)]=Smin0SminP(zx)dxE[\min(z, S_{\min})] = S_{\min} - \int_0^{S_{\min}} P(z \leq x) \, dx

这正好对应了图片中“the value at date 0 of receiving \min(z, S_{\min})min(z,Smin)\min(z, S_{\min}) at date T”的计算基础。附录B.2提供了 P(z \leq x)P(zx)P(z \leq x) 的具体表达式,从而允许计算这个积分。

总结

这个等式的成立依赖于非负随机变量的期望公式和变量代换,并假设 zzz 是连续随机变量。在回望期权定价中,它被用于将问题转化为对最小值分布的积分计算。

证明E[X] = \int_{0}^{\infty} P(X > x) \, dxE[X]=0P(X>x)dxE[X] = \int_{0}^{\infty} P(X > x) \, dx

公式概述

对于任意非负随机变量 XXX(即 P(X \geq 0) = 1P(X0)=1P(X \geq 0) = 1),其期望 E[X]E[X]E[X] 可以表示为:

E[X] = \int_{0}^{\infty} P(X > x) \, dx
E[X]=0P(X>x)dxE[X] = \int_{0}^{\infty} P(X > x) \, dx

其中 P(X > x) = 1 - F(x)P(X>x)=1F(x)P(X > x) = 1 - F(x)F(x)F(x)F(x)XXX 的累积分布函数(CDF)。这个公式的核心优势在于:它避免了直接处理概率密度函数(PDF)的复杂性,特别适用于PDF难以求导或定义的场景

公式的证明

证明主要分为两种思路:分部积分法(适用于连续随机变量)和积分交换法(通用性强)。以下是基于搜索结果的详细推导。

方法一:分部积分法(针对连续型随机变量)

  1. 写出期望的积分表达式:假设 XXX 是连续型非负随机变量,其概率密度函数为 f(x)f(x)f(x),则期望为:
E[X] = \int_0^{\infty} x f(x) \, dx
E[X]=0xf(x)dxE[X] = \int_0^{\infty} x f(x) \, dx
  1. 应用分部积分法
E[X] = \int_0^{\infty} x f(x) \, dx = \left[ x F(x) \right]_{0}^{\infty} - \int_0^{\infty} F(x) \, dx
E[X]=0xf(x)dx=[xF(x)]00F(x)dxE[X] = \int_0^{\infty} x f(x) \, dx = \left[ x F(x) \right]_{0}^{\infty} - \int_0^{\infty} F(x) \, dx
  1. 关键:处理广义积分与边界项 上面的等式是对于上限为 bbb 的普通积分成立,我们需要取极限 b \to \inftybb \to \infty 来考察广义积分:
E[X] = \lim_{b \to \infty} \left( \int_0^{b} x f(x) \, dx \right) = \lim_{b \to \infty} \left( \left[ x F(x) \right]_{0}^{b} - \int_0^{b} F(x) \, dx \right)
E[X]=limb(0bxf(x)dx)=limb([xF(x)]0b0bF(x)dx)E[X] = \lim_{b \to \infty} \left( \int_0^{b} x f(x) \, dx \right) = \lim_{b \to \infty} \left( \left[ x F(x) \right]_{0}^{b} - \int_0^{b} F(x) \, dx \right)

化简为:

E[X] = \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right)
E[X]=limb(bF(b)0bF(x)dx)E[X] = \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right)

现在,我们将 E[X] = \int_0^{\infty} (1 - F(x)) \, dxE[X]=0(1F(x))dxE[X] = \int_0^{\infty} (1 - F(x)) \, dx 的等式两边同时考虑进来。为了证明两者相等,我们只需证明:

\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) = \int_0^{\infty} (1 - F(x)) \, dx
limb(bF(b)0bF(x)dx)=0(1F(x))dx\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) = \int_0^{\infty} (1 - F(x)) \, dx

这等价于证明:

\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx - \int_0^{b} (1 - F(x)) \, dx \right) = 0
limb(bF(b)0bF(x)dx0b(1F(x))dx)=0\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx - \int_0^{b} (1 - F(x)) \, dx \right) = 0

注意到 \int_0^{b} F(x) \, dx + \int_0^{b} (1 - F(x)) \, dx = \int_0^{b} 1 \, dx = b0bF(x)dx+0b(1F(x))dx=0b1dx=b\int_0^{b} F(x) \, dx + \int_0^{b} (1 - F(x)) \, dx = \int_0^{b} 1 \, dx = b,所以上式变为:

\lim_{b \to \infty} (b F(b) - b) = \lim_{b \to \infty} b (F(b) - 1) = -\lim_{b \to \infty} b (1 - F(b))
limb(bF(b)b)=limbb(F(b)1)=limbb(1F(b))\lim_{b \to \infty} (b F(b) - b) = \lim_{b \to \infty} b (F(b) - 1) = -\lim_{b \to \infty} b (1 - F(b))

因此,整个证明成立的关键就在于证明 \lim_{b \to \infty} b (1 - F(b)) = 0limbb(1F(b))=0\lim_{b \to \infty} b (1 - F(b)) = 0。而这个结论在 E[X] < \inftyE[X]<E[X] < \infty 的条件下是成立的,正如我们之前严谨证明的那样。所以,分部积分法的证明思路本身没有问题,但需要最终归结到证明 \lim_{x \to \infty} x (1-F(x)) = 0limxx(1F(x))=0\lim_{x \to \infty} x (1-F(x)) = 0,而不是我之前错误陈述的 \lim_{x \to \infty} x F(x) = 0limxxF(x)=0\lim_{x \to \infty} x F(x) = 0

一个更简洁通用的证明方法

由于分部积分法的证明在边界处理上容易令人困惑,这里提供一个基于**交换积分次序(Fubini定理)**的证明,它更简洁、通用,且不涉及棘手的边界项讨论。

证明过程如下:

\begin{aligned} E[X] &= \int_{\Omega} X \, dP \quad &\text{(期望的定义)} \\ &= \int_{\Omega} \left( \int_{0}^{X} 1 \, dx \right) dP \quad &\text{(因为对于固定的 $X>0$, $\int_0^X 1 dx = X$)} \\ &= \int_{\Omega} \left( \int_{0}^{\infty} 1_{\{x < X\}} \, dx \right) dP \quad &\text{($1_{\{x < X\}}$ 是指示函数,当 $x < X$ 时为1,否则为0)} \\ &= \int_{0}^{\infty} \left( \int_{\Omega} 1_{\{x < X\}} \, dP \right) dx \quad &\text{(交换积分次序,由Fubini定理保证)} \\ &= \int_{0}^{\infty} P(X > x) \, dx \quad &\text{(因为 $\int_{\Omega} 1_{\{x < X\}} dP = P(x < X) = P(X > x)$)} \\ &= \int_{0}^{\infty} (1 - F(x)) \, dx \quad &\text{(因为 $P(X > x) = 1 - P(X \le x) = 1 - F(x)$)} \end{aligned}
E[X]=ΩXdP(期望的定义)=Ω(0X1dx)dP(因为对于固定的 X>00X1dx=X)=Ω(01{x<X}dx)dP(1{x<X} 是指示函数,当 x<X 时为1,否则为0)=0(Ω1{x<X}dP)dx(交换积分次序,由Fubini定理保证)=0P(X>x)dx(因为 Ω1{x<X}dP=P(x<X)=P(X>x))=0(1F(x))dx(因为 P(X>x)=1P(Xx)=1F(x))\begin{aligned} E[X] &= \int_{\Omega} X \, dP \quad &\text{(期望的定义)} \\ &= \int_{\Omega} \left( \int_{0}^{X} 1 \, dx \right) dP \quad &\text{(因为对于固定的 $X>0$, $\int_0^X 1 dx = X$)} \\ &= \int_{\Omega} \left( \int_{0}^{\infty} 1_{\{x < X\}} \, dx \right) dP \quad &\text{($1_{\{x < X\}}$ 是指示函数,当 $x < X$ 时为1,否则为0)} \\ &= \int_{0}^{\infty} \left( \int_{\Omega} 1_{\{x < X\}} \, dP \right) dx \quad &\text{(交换积分次序,由Fubini定理保证)} \\ &= \int_{0}^{\infty} P(X > x) \, dx \quad &\text{(因为 $\int_{\Omega} 1_{\{x < X\}} dP = P(x < X) = P(X > x)$)} \\ &= \int_{0}^{\infty} (1 - F(x)) \, dx \quad &\text{(因为 $P(X > x) = 1 - P(X \le x) = 1 - F(x)$)} \end{aligned}

这个证明清晰地展示了从期望定义到目标公式的转换过程,逻辑链非常完整,并且适用于连续型和离散型非负随机变量。

方法二:积分交换法(通用证明,适用于连续/离散型)

此方法通过交换积分次序直接推导,不依赖分布类型:

  1. 从概率表达式出发
\int_{0}^{\infty} P(X > x) \, dx = \int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx
0P(X>x)dx=0[xf(t)dt]dx\int_{0}^{\infty} P(X > x) \, dx = \int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx

其中 f(t)f(t)f(t)XXX 的PDF(若是离散型,积分改为求和)。

  1. 交换积分次序(使用Fubini定理): 积分区域是 0 \leq x \leq t < \infty0xt<0 \leq x \leq t < \infty,交换次序后:
\int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx = \int_{0}^{\infty} \left[ \int_{0}^{t} dx \right] f(t) \, dt = \int_{0}^{\infty} t f(t) \, dt
0[xf(t)dt]dx=0[0tdx]f(t)dt=0tf(t)dt\int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx = \int_{0}^{\infty} \left[ \int_{0}^{t} dx \right] f(t) \, dt = \int_{0}^{\infty} t f(t) \, dt
  1. 得到期望
\int_{0}^{\infty} t f(t) \, dt = E[X]
0tf(t)dt=E[X]\int_{0}^{\infty} t f(t) \, dt = E[X]

因此原式得证。 离散型随机变量的证明类似:将积分改为求和,利用 P(X > x) = \sum_{k > x} P(X = k)P(X>x)=k>xP(X=k)P(X > x) = \sum_{k > x} P(X = k),然后交换求和次序即可。

  1. ⚠️ 注意事项

💎 总结

非负随机变量的期望公式之所以成立,是因为它本质上是期望定义的积分变换形式,通过分部积分或积分交换揭示了期望与尾部概率的等价关系。这个公式在概率论、统计学和机器学习中广泛应用,例如:

证明 \lim_{x \to \infty} x (1 - F(x)) = 0limxx(1F(x))=0\lim_{x \to \infty} x (1 - F(x)) = 0(当 E[X] < \inftyE[X]<E[X] < \infty

证明思路:利用积分尾部的收敛性和不等式放缩。

证明步骤

  1. 由于 XXX 是非负随机变量且 E[X] < \inftyE[X]<E[X] < \infty,期望可表示为:
E[X] = \int_0^\infty t f(t) \, dt < \infty,
E[X]=0tf(t)dt<,E[X] = \int_0^\infty t f(t) \, dt < \infty,

其中 f(t)f(t)f(t) 是概率密度函数(对于离散随机变量,证明类似,将积分换为求和)。

  1. 考虑尾部期望:对于任意 x > 0x>0x > 0,有:
\int_x^\infty t f(t) \, dt \geq \int_x^\infty x f(t) \, dt = x \int_x^\infty f(t) \, dt = x (1 - F(x)).
xtf(t)dtxxf(t)dt=xxf(t)dt=x(1F(x)).\int_x^\infty t f(t) \, dt \geq \int_x^\infty x f(t) \, dt = x \int_x^\infty f(t) \, dt = x (1 - F(x)).

这里,不等式成立是因为在积分区间 [x, \infty)[x,)[x, \infty) 上,有 t \geq xtxt \geq x,所以 t f(t) \geq x f(t)tf(t)xf(t)t f(t) \geq x f(t)

  1. 因此,我们得到:
0 \leq x (1 - F(x)) \leq \int_x^\infty t f(t) \, dt.
0x(1F(x))xtf(t)dt.0 \leq x (1 - F(x)) \leq \int_x^\infty t f(t) \, dt.
  1. 由于 E[X] < \inftyE[X]<E[X] < \infty,积分 \int_0^\infty t f(t) \, dt0tf(t)dt\int_0^\infty t f(t) \, dt 收敛,这意味着尾部积分趋于零:
\lim_{x \to \infty} \int_x^\infty t f(t) \, dt = 0.
limxxtf(t)dt=0.\lim_{x \to \infty} \int_x^\infty t f(t) \, dt = 0.
  1. 由夹逼定理(squeeze theorem),有:
\lim_{x \to \infty} x (1 - F(x)) = 0.
limxx(1F(x))=0.\lim_{x \to \infty} x (1 - F(x)) = 0.

证毕

💡 补充说明

推导I_1=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}})I1=eA+σ2x2N(logLAσ2TσT)LN(logLAσT)I_1=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}})

推导

I_1 = \int_0^L \mathrm{N}(-d_x) \, dx=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}})
I1=0LN(dx)dx=eA+σ2x2N(logLAσ2TσT)LN(logLAσT)I_1 = \int_0^L \mathrm{N}(-d_x) \, dx=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}})

其中,d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} }dx=log(S(0)/x)+μTσTd_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} }\mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2L = S_{\min}L=SminL = S_{\min} 是历史最小资产价格。最终目标是得到表达式:

I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)
I1=eA+σ2T2N(logLAσ2TσT)LN(logLAσT)I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)

其中 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T。以下是详细推导。

步骤1: 表达积分并变量代换

积分:

I_1 = \int_0^L \mathrm{N}(-d_x) \, dx
I1=0LN(dx)dxI_1 = \int_0^L \mathrm{N}(-d_x) \, dx

首先,表达 d_xdxd_x:

d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} }
dx=log(S(0)/x)+μTσT=logS(0)logx+μTσTd_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} }

A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T,则:

d_x = \frac{A - \log x}{\sigma \sqrt{T}}
dx=AlogxσTd_x = \frac{A - \log x}{\sigma \sqrt{T}}

因此:

\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right)
N(dx)=N(logxAσT)\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right)

所以:

I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx
I1=0LN(logxAσT)dxI_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx

现在进行变量代换。令 y = \log xy=logxy = \log x,则 x = e^yx=eyx = e^ydx = e^y dydx=eydydx = e^y dy。当 xxx 从 0 到 LLLyyy-\infty-\infty\log LlogL\log L。代入:

I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy
I1=logLN(yAσT)eydyI_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy

z = \frac{y - A}{\sigma \sqrt{T}}z=yAσTz = \frac{y - A}{\sigma \sqrt{T}},则 y = A + z \sigma \sqrt{T}y=A+zσTy = A + z \sigma \sqrt{T}dy = \sigma \sqrt{T} dzdy=σTdzdy = \sigma \sqrt{T} dz。当 y = -\inftyy=y = -\inftyz = -\inftyz=z = -\infty; 当 y = \log Ly=logLy = \log Lz = z_0 = \frac{\log L - A}{\sigma \sqrt{T}}z=z0=logLAσTz = z_0 = \frac{\log L - A}{\sigma \sqrt{T}}。代入:

I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz
I1=z0N(z)eA+zσTσTdz=σTeAz0N(z)ezσTdzI_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz

c = \sigma \sqrt{T}c=σTc = \sigma \sqrt{T},则:

I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz
I1=σTeAz0N(z)eczdzI_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

步骤2: 计算积分 \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dzz0N(z)eczdz\int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

计算积分:

J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz
J=z0N(z)eczdzJ = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz

利用交换积分次序的方法。注意 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dtN(z)=zϕ(t)dt\mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}ϕ(t)=12πet2/2\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} 是标准正态密度函数。因此:

J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz
J=z0(zϕ(t)dt)eczdzJ = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz

交换积分次序:对于固定 tttzzztttz_0z0z_0(因为当 z < tz<tz < t 时,内层积分不贡献)。所以:

J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt
J=z0ϕ(t)(tz0eczdz)dtJ = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt

计算内层积分:

\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right]
tz0eczdz=1c[ecz0ect]\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right]

代入:

J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt
J=1cz0ϕ(t)(ecz0ect)dt=1cecz0z0ϕ(t)dt1cz0ϕ(t)ectdtJ = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt

现在:

\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c)
z0ϕ(t)ectdt=ec2/2z0ϕ(tc)dt=ec2/2N(z0c)\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c)

因此:

J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
J=1c[ecz0N(z0)ec2/2N(z0c)]J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

步骤3: 代入回 I_1I1I_1

代入 JJJI_1I1I_1:

I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
I1=σTeA1c[ecz0N(z0)ec2/2N(z0c)]I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

由于 c = \sigma \sqrt{T}c=σTc = \sigma \sqrt{T},有 \sigma \sqrt{T} / c = 1σT/c=1\sigma \sqrt{T} / c = 1,所以:

I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]
I1=eA[ecz0N(z0)ec2/2N(z0c)]I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right]

现在计算指数项:

代入:

I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right)
I1=eA[LeAN(z0)eσ2T/2N(logLAσ2TσT)]=LN(z0)eA+σ2T/2N(logLAσ2TσT)I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right)

步骤4: 简化表达式

回忆 A = \log S(0) + \mu TA=logS(0)+μTA = \log S(0) + \mu T\mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2,所以:

\begin{aligned}
A + \frac{\sigma^2 T}{2} &= \log S(0) + \mu T + \frac{\sigma^2 T}{2} \\
&= \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2}\\
&= \log S(0) + (r - q) T
\end{aligned}
A+σ2T2=logS(0)+μT+σ2T2=logS(0)+(rqσ22)T+σ2T2=logS(0)+(rq)T\begin{aligned} A + \frac{\sigma^2 T}{2} &= \log S(0) + \mu T + \frac{\sigma^2 T}{2} \\ &= \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2}\\ &= \log S(0) + (r - q) T \end{aligned}

因此:

e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T}
eA+σ2T/2=elogS(0)+(rq)T=S(0)e(rq)Te^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T}

另外,z_0 = \frac{\log L - A}{\sigma \sqrt{T}}z0=logLAσTz_0 = \frac{\log L - A}{\sigma \sqrt{T}},所以最终:

I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)
I1=eA+σ2T2N(logLAσ2TσT)LN(logLAσT)I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right)

这就是所求的表达式。

步骤5: 与期权定价公式中的符号联系

在期权定价公式中,通常定义:

可以验证:

因此:

I_1 = S(0) e^{(r - q) T} \mathrm{N}(-d_1) - L \mathrm{N}(-d_2)
I1=S(0)e(rq)TN(d1)LN(d2)I_1 = S(0) e^{(r - q) T} \mathrm{N}(-d_1) - L \mathrm{N}(-d_2)

推导I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{(r-q)T} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)I2=σ22(rq)(LS(0))2(rq)/σ2e(rq)TS(0)N(d2)σ22(rq)S(0)e(rq)TN(d1)I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{(r-q)T} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)

详细推导积分 I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dxI2=0L(xS(0))2μ/σ2N(dx)dxI_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx 的表达式。其中,\mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }dx=log(x/S(0))+μTσTd'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }L = S_{\min}L=SminL = S_{\min} 是历史最小资产价格。最终目标是得到:

I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)
I2=σ22(rq)(LS(0))2(rq)/σ2S(0)N(d2)σ22(rq)S(0)e(rq)TN(d1)I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)

其中 d_1d1d_1d_2'd2d_2' 的定义:

d_1 = \frac{ \log(S(0)/L) + (r-q+\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }, \quad d_2' = \frac{ \log(L/S(0)) + (r-q-\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }
d1=log(S(0)/L)+(rq+12σ2)TσT,d2=log(L/S(0))+(rq12σ2)TσTd_1 = \frac{ \log(S(0)/L) + (r-q+\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }, \quad d_2' = \frac{ \log(L/S(0)) + (r-q-\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }

步骤1: 表达积分并进行变量代换

从积分开始:

I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx
I2=0L(xS(0))2μ/σ2N(dx)dxI_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx

其中 d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }dx=log(x/S(0))+μTσTd'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} }.

y = \log xy=logxy = \log x,则 x = e^yx=eyx = e^ydx = e^y dydx=eydydx = e^y dy。当 xxx 从 0 到 LLLyyy-\infty-\infty\log LlogL\log L。代入积分:

I_2 = \int_{-\infty}^{\log L} \left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) e^y \, dy
I2=logL(eyS(0))2μ/σ2N(dx)eydyI_2 = \int_{-\infty}^{\log L} \left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) e^y \, dy

简化:

\left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y / \sigma^2} S(0)^{-2\mu/\sigma^2}
(eyS(0))2μ/σ2=e2μy/σ2S(0)2μ/σ2\left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y / \sigma^2} S(0)^{-2\mu/\sigma^2}

所以:

I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}(d'_x) \, dy
I2=S(0)2μ/σ2logLey(1+2μ/σ2)N(dx)dyI_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}(d'_x) \, dy

现在,d'_x = \frac{ y - \log S(0) + \mu T }{ \sigma \sqrt{T} }dx=ylogS(0)+μTσTd'_x = \frac{ y - \log S(0) + \mu T }{ \sigma \sqrt{T} }。令 B = \log S(0) - \mu TB=logS(0)μTB = \log S(0) - \mu T,则:

d'_x = \frac{y - B}{\sigma \sqrt{T}}
dx=yBσTd'_x = \frac{y - B}{\sigma \sqrt{T}}

c = 1 + \frac{2\mu}{\sigma^2}c=1+2μσ2c = 1 + \frac{2\mu}{\sigma^2},则积分变为:

I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{c y} \mathrm{N}\left( \frac{y - B}{\sigma \sqrt{T}} \right) dy
I2=S(0)2μ/σ2logLecyN(yBσT)dyI_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{c y} \mathrm{N}\left( \frac{y - B}{\sigma \sqrt{T}} \right) dy

步骤2: 变量代换并简化积分

z = \frac{y - B}{\sigma \sqrt{T}}z=yBσTz = \frac{y - B}{\sigma \sqrt{T}},则 y = B + z \sigma \sqrt{T}y=B+zσTy = B + z \sigma \sqrt{T}dy = \sigma \sqrt{T} dzdy=σTdzdy = \sigma \sqrt{T} dz。当 y = -\inftyy=y = -\inftyz = -\inftyz=z = -\infty; 当 y = \log Ly=logLy = \log Lz = z_0 = \frac{\log L - B}{\sigma \sqrt{T}}z=z0=logLBσTz = z_0 = \frac{\log L - B}{\sigma \sqrt{T}}. 代入:

I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{z_0} e^{c (B + z \sigma \sqrt{T})} \mathrm{N}(z) \sigma \sqrt{T} \, dz
I2=S(0)2μ/σ2z0ec(B+zσT)N(z)σTdzI_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{z_0} e^{c (B + z \sigma \sqrt{T})} \mathrm{N}(z) \sigma \sqrt{T} \, dz

简化:

I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{c z \sigma \sqrt{T}} \mathrm{N}(z) \, dz
I2=S(0)2μ/σ2ecBσTz0eczσTN(z)dzI_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{c z \sigma \sqrt{T}} \mathrm{N}(z) \, dz

k = c \sigma \sqrt{T}k=cσTk = c \sigma \sqrt{T}(无量纲),则:

I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz
I2=S(0)2μ/σ2ecBσTz0ekzN(z)dzI_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz

步骤3: 计算积分 \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dzz0ekzN(z)dz\int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz

J = \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dzJ=z0ekzN(z)dzJ = \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz. 使用交换积分次序的方法。因为 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) \, dtN(z)=zϕ(t)dt\mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) \, dt,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2}ϕ(t)=12πet2/2\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} 是标准正态密度函数,所以:

J = \int_{-\infty}^{z_0} e^{k z} \left( \int_{-\infty}^{z} \phi(t) \, dt \right) dz = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{k z} dz \right) dt
J=z0ekz(zϕ(t)dt)dz=z0ϕ(t)(tz0ekzdz)dtJ = \int_{-\infty}^{z_0} e^{k z} \left( \int_{-\infty}^{z} \phi(t) \, dt \right) dz = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{k z} dz \right) dt

计算内层积分:

\int_{t}^{z_0} e^{k z} dz = \frac{1}{k} \left[ e^{k z_0} - e^{k t} \right]
tz0ekzdz=1k[ekz0ekt]\int_{t}^{z_0} e^{k z} dz = \frac{1}{k} \left[ e^{k z_0} - e^{k t} \right]

所以:

J = \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) \left( e^{k z_0} - e^{k t} \right) dt = \frac{1}{k} e^{k z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) e^{k t} dt
J=1kz0ϕ(t)(ekz0ekt)dt=1kekz0z0ϕ(t)dt1kz0ϕ(t)ektdtJ = \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) \left( e^{k z_0} - e^{k t} \right) dt = \frac{1}{k} e^{k z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) e^{k t} dt

其中:

因此:

J = \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]
J=1k[ekz0N(z0)ek2/2N(z0k)]J = \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]

步骤4: 代入回 I_2I2I_2

代入 JJJI_2I2I_2:

I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \cdot \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]
I2=S(0)2μ/σ2ecBσT1k[ekz0N(z0)ek2/2N(z0k)]I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \cdot \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]

由于 k = c \sigma \sqrt{T}k=cσTk = c \sigma \sqrt{T},有 \sigma \sqrt{T} / k = 1 / cσT/k=1/c\sigma \sqrt{T} / k = 1 / c,所以:

I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \frac{1}{c} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]
I2=S(0)2μ/σ2ecB1c[ekz0N(z0)ek2/2N(z0k)]I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \frac{1}{c} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]

步骤5: 简化指数项

现在简化各项表达式:

B = \log S(0) - \mu T, \quad c = 1 + \frac{2\mu}{\sigma^2}
B=logS(0)μT,c=1+2μσ2B = \log S(0) - \mu T, \quad c = 1 + \frac{2\mu}{\sigma^2}
e^{c B} = e^{c (\log S(0) - \mu T)} = S(0)^c e^{-c \mu T}
ecB=ec(logS(0)μT)=S(0)cecμTe^{c B} = e^{c (\log S(0) - \mu T)} = S(0)^c e^{-c \mu T}
S(0)^{-2\mu/\sigma^2} e^{c B} = S(0)^{-2\mu/\sigma^2} S(0)^c e^{-c \mu T} = S(0)^{c - 2\mu/\sigma^2} e^{-c \mu T}
S(0)2μ/σ2ecB=S(0)2μ/σ2S(0)cecμT=S(0)c2μ/σ2ecμTS(0)^{-2\mu/\sigma^2} e^{c B} = S(0)^{-2\mu/\sigma^2} S(0)^c e^{-c \mu T} = S(0)^{c - 2\mu/\sigma^2} e^{-c \mu T}

由于 c = 1 + \frac{2\mu}{\sigma^2}c=1+2μσ2c = 1 + \frac{2\mu}{\sigma^2},有 c - \frac{2\mu}{\sigma^2} = 1c2μσ2=1c - \frac{2\mu}{\sigma^2} = 1,所以:

S(0)^{-2\mu/\sigma^2} e^{c B} = S(0) e^{-c \mu T}
S(0)2μ/σ2ecB=S(0)ecμTS(0)^{-2\mu/\sigma^2} e^{c B} = S(0) e^{-c \mu T}

因此:

I_2 = \frac{1}{c} S(0) e^{-c \mu T} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]
I2=1cS(0)ecμT[ekz0N(z0)ek2/2N(z0k)]I_2 = \frac{1}{c} S(0) e^{-c \mu T} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right]
k z_0 = c \sigma \sqrt{T} \cdot \frac{\log L - B}{\sigma \sqrt{T}} = c (\log L - B)
kz0=cσTlogLBσT=c(logLB)k z_0 = c \sigma \sqrt{T} \cdot \frac{\log L - B}{\sigma \sqrt{T}} = c (\log L - B)
e^{k z_0} = e^{c (\log L - B)} = L^c e^{-c B} = L^c S(0)^{-c} e^{c \mu T}
ekz0=ec(logLB)=LcecB=LcS(0)cecμTe^{k z_0} = e^{c (\log L - B)} = L^c e^{-c B} = L^c S(0)^{-c} e^{c \mu T}

所以:

e^{-c \mu T} e^{k z_0} = e^{-c \mu T} L^c S(0)^{-c} e^{c \mu T} = \left( \frac{L}{S(0)} \right)^c
ecμTekz0=ecμTLcS(0)cecμT=(LS(0))ce^{-c \mu T} e^{k z_0} = e^{-c \mu T} L^c S(0)^{-c} e^{c \mu T} = \left( \frac{L}{S(0)} \right)^c
k^2 = (c \sigma \sqrt{T})^2 = c^2 \sigma^2 T
k2=(cσT)2=c2σ2Tk^2 = (c \sigma \sqrt{T})^2 = c^2 \sigma^2 T
e^{k^2 / 2} = e^{c^2 \sigma^2 T / 2}
ek2/2=ec2σ2T/2e^{k^2 / 2} = e^{c^2 \sigma^2 T / 2}
e^{-c \mu T} e^{k^2 / 2} = e^{-c \mu T + c^2 \sigma^2 T / 2} = e^{c T ( - \mu + c \sigma^2 / 2 )}
ecμTek2/2=ecμT+c2σ2T/2=ecT(μ+cσ2/2)e^{-c \mu T} e^{k^2 / 2} = e^{-c \mu T + c^2 \sigma^2 T / 2} = e^{c T ( - \mu + c \sigma^2 / 2 )}

计算 - \mu + c \sigma^2 / 2μ+cσ2/2- \mu + c \sigma^2 / 2:

c = 1 + \frac{2\mu}{\sigma^2} \implies c \sigma^2 / 2 = \frac{\sigma^2}{2} + \mu
c=1+2μσ2    cσ2/2=σ22+μc = 1 + \frac{2\mu}{\sigma^2} \implies c \sigma^2 / 2 = \frac{\sigma^2}{2} + \mu
- \mu + c \sigma^2 / 2 = - \mu + \frac{\sigma^2}{2} + \mu = \frac{\sigma^2}{2}
μ+cσ2/2=μ+σ22+μ=σ22- \mu + c \sigma^2 / 2 = - \mu + \frac{\sigma^2}{2} + \mu = \frac{\sigma^2}{2}

所以:

e^{-c \mu T} e^{k^2 / 2} = e^{c T \cdot \sigma^2 / 2} = e^{c \sigma^2 T / 2}
ecμTek2/2=ecTσ2/2=ecσ2T/2e^{-c \mu T} e^{k^2 / 2} = e^{c T \cdot \sigma^2 / 2} = e^{c \sigma^2 T / 2}

代入回 I_2I2I_2:

I_2 = \frac{1}{c} S(0) \left[ \left( \frac{L}{S(0)} \right)^c \mathrm{N}(z_0) - e^{c \sigma^2 T / 2} \mathrm{N}(z_0 - k) \right]
I2=1cS(0)[(LS(0))cN(z0)ecσ2T/2N(z0k)]I_2 = \frac{1}{c} S(0) \left[ \left( \frac{L}{S(0)} \right)^c \mathrm{N}(z_0) - e^{c \sigma^2 T / 2} \mathrm{N}(z_0 - k) \right]

步骤6: 代入 ccc 并简化

现在代入 ccc 的具体值。由于 \mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2,有:

\frac{2\mu}{\sigma^2} = \frac{2(r - q - \sigma^2 / 2)}{\sigma^2} = \frac{2(r - q)}{\sigma^2} - 1
2μσ2=2(rqσ2/2)σ2=2(rq)σ21\frac{2\mu}{\sigma^2} = \frac{2(r - q - \sigma^2 / 2)}{\sigma^2} = \frac{2(r - q)}{\sigma^2} - 1

所以:

c = 1 + \frac{2\mu}{\sigma^2} = 1 + \frac{2(r - q)}{\sigma^2} - 1 = \frac{2(r - q)}{\sigma^2}
c=1+2μσ2=1+2(rq)σ21=2(rq)σ2c = 1 + \frac{2\mu}{\sigma^2} = 1 + \frac{2(r - q)}{\sigma^2} - 1 = \frac{2(r - q)}{\sigma^2}

因此:

所以:

I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(z_0) - e^{(r - q) T} \mathrm{N}(z_0 - k) \right]
I2=σ22(rq)S(0)[(LS(0))2(rq)/σ2N(z0)e(rq)TN(z0k)]I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(z_0) - e^{(r - q) T} \mathrm{N}(z_0 - k) \right]

步骤7: 将 z_0z0z_0z_0 - kz0kz_0 - k 表示为标准形式

现在表达 z_0z0z_0z_0 - kz0kz_0 - k 使用 d_1d1d_1d_2'd2d_2':

z_0 = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } = d_2'
z0=log(L/S(0))+(rqσ2/2)TσT=d2z_0 = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } = d_2'

其中 d_2' = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} }d2=log(L/S(0))+(rqσ2/2)TσTd_2' = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} }(从图片定义)。

z_0 - k = d_2' - c \sigma \sqrt{T} = d_2' - \frac{2(r - q)}{\sigma^2} \sigma \sqrt{T} = d_2' - \frac{2(r - q) \sqrt{T}}{\sigma}
z0k=d2cσT=d22(rq)σ2σT=d22(rq)Tσz_0 - k = d_2' - c \sigma \sqrt{T} = d_2' - \frac{2(r - q)}{\sigma^2} \sigma \sqrt{T} = d_2' - \frac{2(r - q) \sqrt{T}}{\sigma}

但更直接地,从表达式:

z_0 - k = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } - c \sigma \sqrt{T}
z0k=log(L/S(0))+μTσTcσTz_0 - k = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } - c \sigma \sqrt{T}

代入 c = \frac{2(r - q)}{\sigma^2}c=2(rq)σ2c = \frac{2(r - q)}{\sigma^2}\mu = r - q - \sigma^2 / 2μ=rqσ2/2\mu = r - q - \sigma^2 / 2:

z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } - \frac{2(r - q) T}{\sigma \sqrt{T}}
z0k=log(L/S(0))+(rqσ2/2)TσT2(rq)TσTz_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } - \frac{2(r - q) T}{\sigma \sqrt{T}}

合并分子:

z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T - 2(r - q) T }{ \sigma \sqrt{T} } = \frac{ \log(L/S(0)) - (r - q) T - \sigma^2 T / 2 }{ \sigma \sqrt{T} }
z0k=log(L/S(0))+(rqσ2/2)T2(rq)TσT=log(L/S(0))(rq)Tσ2T/2σTz_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T - 2(r - q) T }{ \sigma \sqrt{T} } = \frac{ \log(L/S(0)) - (r - q) T - \sigma^2 T / 2 }{ \sigma \sqrt{T} }
= - \frac{ \log(S(0)/L) + (r - q) T + \sigma^2 T / 2 }{ \sigma \sqrt{T} } = - d_1
=log(S(0)/L)+(rq)T+σ2T/2σT=d1= - \frac{ \log(S(0)/L) + (r - q) T + \sigma^2 T / 2 }{ \sigma \sqrt{T} } = - d_1

其中 d_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} }d1=log(S(0)/L)+(rq+σ2/2)TσTd_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} }.

因此:

代入回 I_2I2I_2:

I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(d_2') - e^{(r - q) T} \mathrm{N}(-d_1) \right]
I2=σ22(rq)S(0)[(LS(0))2(rq)/σ2N(d2)e(rq)TN(d1)]I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(d_2') - e^{(r - q) T} \mathrm{N}(-d_1) \right]

即:

I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1)
I2=σ22(rq)(LS(0))2(rq)/σ2S(0)N(d2)σ22(rq)S(0)e(rq)TN(d1)I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1)