浮动执行价格回望看涨期权定价公式推导
期权收益与定价公式 :
浮动执行价格回望看涨期权的收益在到期日 T T T T 为 S(T) - \min(z, S_{\min}) S ( T ) − min ⁡ ( z , S min ⁡ ) S(T) - \min(z, S_{\min}) S ( T ) − min ( z , S m i n ​ ) ,其中:
S(T) S ( T ) S(T) S ( T ) 是到期资产价格。
z z z z 是从估值日0到到期日 T T T T 的最小资产价格。
S_{\min} S min ⁡ S_{\min} S m i n ​ 是从合约开始到估值日0的历史最小资产价格。
在风险中性测度下,期权在日期0的价值 V V V V 是收益的贴现值:
V = e^{-rT} \mathbb{E}^Q [S(T) - \min(z, S_{\min})] = e^{-rT} \mathbb{E}^Q [S(T)] - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] V = e − r T E Q [ S ( T ) − min ⁡ ( z , S min ⁡ ) ] = e − r T E Q [ S ( T ) ] − e − r T E Q [ min ⁡ ( z , S min ⁡ ) ] V = e^{-rT} \mathbb{E}^Q [S(T) - \min(z, S_{\min})] = e^{-rT} \mathbb{E}^Q [S(T)] - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] V = e − r T E Q [ S ( T ) − min ( z , S m i n ​ )] = e − r T E Q [ S ( T )] − e − r T E Q [ min ( z , S m i n ​ )]
其中 \mathbb{E}^Q E Q \mathbb{E}^Q E Q 是风险中性期望,r r r r 是无风险利率,q q q q 是股息率。在风险中性下,\mathbb{E}^Q [S(T)] = S(0) e^{(r-q)T} E Q [ S ( T ) ] = S ( 0 ) e ( r − q ) T \mathbb{E}^Q [S(T)] = S(0) e^{(r-q)T} E Q [ S ( T )] = S ( 0 ) e ( r − q ) T ,所以:
e^{-rT} \mathbb{E}^Q [S(T)] = e^{-qT} S(0) e − r T E Q [ S ( T ) ] = e − q T S ( 0 ) e^{-rT} \mathbb{E}^Q [S(T)] = e^{-qT} S(0) e − r T E Q [ S ( T )] = e − qT S ( 0 )
因此,定价的关键是计算 e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] e − r T E Q [ min ⁡ ( z , S min ⁡ ) ] e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] e − r T E Q [ min ( z , S m i n ​ )] 。
计算 \mathbb{E}^Q [\min(z, S_{\min})] E Q [ min ⁡ ( z , S min ⁡ ) ] \mathbb{E}^Q [\min(z, S_{\min})] E Q [ min ( z , S m i n ​ )] :
令 L = S_{\min} L = S min ⁡ L = S_{\min} L = S m i n ​ ,我们需要计算 \mathbb{E}^Q [\min(z, L)] E Q [ min ⁡ ( z , L ) ] \mathbb{E}^Q [\min(z, L)] E Q [ min ( z , L )] 。
从附录B.2,几何布朗运动的最小值 z z z z 的分布函数为:
P(z \leq x) = \mathrm{N}(-d_x) + \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) P ( z ≤ x ) = N ( − d x ) + ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ ) P(z \leq x) = \mathrm{N}(-d_x) + \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) P ( z ≤ x ) = N ( − d x ​ ) + ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ )
其中:
\mu = r - q - \sigma^2/2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2/2 μ = r − q − σ 2 /2 (风险中性漂移),
\mathrm{N}(\cdot) N ( ⋅ ) \mathrm{N}(\cdot) N ( ⋅ ) 是标准正态分布函数,
d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } d x = log ⁡ ( S ( 0 ) / x ) + μ T σ T d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } d x ​ = σ T ​ l o g ( S ( 0 ) / x ) + μ T ​ ,
d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ = log ⁡ ( x / S ( 0 ) ) + μ T σ T d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ ​ = σ T ​ l o g ( x / S ( 0 )) + μ T ​ 。
使用期望公式:
\mathbb{E}[\min(z, L)] = L - \int_0^L P(z \leq x) \, dx E [ min ⁡ ( z , L ) ] = L − ∫ 0 L P ( z ≤ x )   d x \mathbb{E}[\min(z, L)] = L - \int_0^L P(z \leq x) \, dx E [ min ( z , L )] = L − ∫ 0 L ​ P ( z ≤ x ) d x
这是因为 \min(z, L) = L - (L - z)^+ min ⁡ ( z , L ) = L − ( L − z ) + \min(z, L) = L - (L - z)^+ min ( z , L ) = L − ( L − z ) + ,且 \mathbb{E}[(L - z)^+] = \int_0^L P(z \leq x) \, dx E [ ( L − z ) + ] = ∫ 0 L P ( z ≤ x )   d x \mathbb{E}[(L - z)^+] = \int_0^L P(z \leq x) \, dx E [( L − z ) + ] = ∫ 0 L ​ P ( z ≤ x ) d x (对于非负随机变量)。
因此,计算 \mathbb{E}^Q [\min(z, L)] E Q [ min ⁡ ( z , L ) ] \mathbb{E}^Q [\min(z, L)] E Q [ min ( z , L )] 归结为计算积分:
I = \int_0^L P(z \leq x) \, dx = \int_0^L \mathrm{N}(-d_x) \, dx + \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I = ∫ 0 L P ( z ≤ x )   d x = ∫ 0 L N ( − d x )   d x + ∫ 0 L ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ )   d x I = \int_0^L P(z \leq x) \, dx = \int_0^L \mathrm{N}(-d_x) \, dx + \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I = ∫ 0 L ​ P ( z ≤ x ) d x = ∫ 0 L ​ N ( − d x ​ ) d x + ∫ 0 L ​ ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ ) d x
令 I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 = ∫ 0 L N ( − d x )   d x I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 ​ = ∫ 0 L ​ N ( − d x ​ ) d x 和 I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 = ∫ 0 L ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ )   d x I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 ​ = ∫ 0 L ​ ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ ) d x .
计算积分 I_1 I 1 I_1 I 1 ​ 和 I_2 I 2 I_2 I 2 ​ :
这些积分可以通过变量代换计算。令 y = \log x y = log ⁡ x y = \log x y = log x ,则 x = e^y x = e y x = e^y x = e y ,dx = e^y dy d x = e y d y dx = e^y dy d x = e y d y ,积分限变为 y \in (-\infty, \log L] y ∈ ( − ∞ , log ⁡ L ] y \in (-\infty, \log L] y ∈ ( − ∞ , log L ] 。
对于 I_1 I 1 I_1 I 1 ​ :
I_1 = \int_{-\infty}^{\log L} \mathrm{N}(-d_{e^y}) e^y \, dy I 1 = ∫ − ∞ log ⁡ L N ( − d e y ) e y   d y I_1 = \int_{-\infty}^{\log L} \mathrm{N}(-d_{e^y}) e^y \, dy I 1 ​ = ∫ − ∞ l o g L ​ N ( − d e y ​ ) e y d y
其中 d_x = \frac{ \log S(0) - y + \mu T }{ \sigma \sqrt{T} } d x = log ⁡ S ( 0 ) − y + μ T σ T d_x = \frac{ \log S(0) - y + \mu T }{ \sigma \sqrt{T} } d x ​ = σ T ​ l o g S ( 0 ) − y + μ T ​ (因为 x = e^y x = e y x = e^y x = e y ,所以 \log x = y log ⁡ x = y \log x = y log x = y )。令 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T ,则 d_x = \frac{A - y}{\sigma \sqrt{T}} d x = A − y σ T d_x = \frac{A - y}{\sigma \sqrt{T}} d x ​ = σ T ​ A − y ​ 。
因此,\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) N ( − d x ) = N ( y − A σ T ) \mathrm{N}(-d_x) = \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) N ( − d x ​ ) = N ( σ T ​ y − A ​ ) 。
积分 I_1 I 1 I_1 I 1 ​ 变为:
I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y \, dy I 1 = ∫ − ∞ log ⁡ L N ( y − A σ T ) e y   d y I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y \, dy I 1 ​ = ∫ − ∞ l o g L ​ N ( σ T ​ y − A ​ ) e y d y
I_1 = \int_{-\infty}^{\frac{\log L - A}{\sigma \sqrt{T}}} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} \, dz I 1 = ∫ − ∞ log ⁡ L − A σ T N ( z ) e A + z σ T σ T   d z I_1 = \int_{-\infty}^{\frac{\log L - A}{\sigma \sqrt{T}}} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} \, dz I 1 ​ = ∫ − ∞ σ T ​ l o g L − A ​ ​ N ( z ) e A + z σ T ​ σ T ​ d z
​ 步骤1: 表达积分并变量代换
​ 积分:
I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 = ∫ 0 L N ( − d x )   d x I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 ​ = ∫ 0 L ​ N ( − d x ​ ) d x
​ 首先,表达 d_x d x d_x d x ​ :
d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} } d x = log ⁡ ( S ( 0 ) / x ) + μ T σ T = log ⁡ S ( 0 ) − log ⁡ x + μ T σ T d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} } d x ​ = σ T ​ log ( S ( 0 ) / x ) + μ T ​ = σ T ​ log S ( 0 ) − log x + μ T ​
​ 令 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T ,则:
d_x = \frac{A - \log x}{\sigma \sqrt{T}} d x = A − log ⁡ x σ T d_x = \frac{A - \log x}{\sigma \sqrt{T}} d x ​ = σ T ​ A − log x ​
​ 因此:
\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) N ( − d x ) = N ( log ⁡ x − A σ T ) \mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) N ( − d x ​ ) = N ( σ T ​ log x − A ​ )
​ 所以:
I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx I 1 = ∫ 0 L N ( log ⁡ x − A σ T ) d x I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx I 1 ​ = ∫ 0 L ​ N ( σ T ​ log x − A ​ ) d x
​ 现在进行变量代换。令 y = \log x y = log ⁡ x y = \log x y = log x ,则 x = e^y x = e y x = e^y x = e y ,dx = e^y dy d x = e y d y dx = e^y dy d x = e y d y 。当 x x x x 从 0 到 L L L L ,y y y y 从 -\infty − ∞ -\infty − ∞ 到 \log L log ⁡ L \log L log L 。代入:
I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy I 1 = ∫ − ∞ log ⁡ L N ( y − A σ T ) e y d y I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy I 1 ​ = ∫ − ∞ l o g L ​ N ( σ T ​ y − A ​ ) e y d y
​ 令 z = \frac{y - A}{\sigma \sqrt{T}} z = y − A σ T z = \frac{y - A}{\sigma \sqrt{T}} z = σ T ​ y − A ​ ,则 y = A + z \sigma \sqrt{T} y = A + z σ T y = A + z \sigma \sqrt{T} y = A + z σ T ​ ,dy = \sigma \sqrt{T} dz d y = σ T d z dy = \sigma \sqrt{T} dz d y = σ T ​ d z 。当 y = -\infty y = − ∞ y = -\infty y = − ∞ ,z = -\infty z = − ∞ z = -\infty z = − ∞ ; 当 y = \log L y = log ⁡ L y = \log L y = log L ,z = z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z = z 0 = log ⁡ L − A σ T z = z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z = z 0 ​ = σ T ​ l o g L − A ​ 。代入:
I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz I 1 = ∫ − ∞ z 0 N ( z ) e A + z σ T σ T d z = σ T e A ∫ − ∞ z 0 N ( z ) e z σ T d z I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz I 1 ​ = ∫ − ∞ z 0 ​ ​ N ( z ) e A + z σ T ​ σ T ​ d z = σ T ​ e A ∫ − ∞ z 0 ​ ​ N ( z ) e z σ T ​ d z
令 c = \sigma \sqrt{T} c = σ T c = \sigma \sqrt{T} c = σ T ​ ,则:
I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz I 1 = σ T e A ∫ − ∞ z 0 N ( z ) e c z d z I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz I 1 ​ = σ T ​ e A ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
步骤2: 计算积分 \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz ∫ − ∞ z 0 N ( z ) e c z d z \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
计算积分:
J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz J = ∫ − ∞ z 0 N ( z ) e c z d z J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz J = ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
利用交换积分次序的方法。注意 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt N ( z ) = ∫ − ∞ z ϕ ( t ) d t \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt N ( z ) = ∫ − ∞ z ​ ϕ ( t ) d t ,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 1 2 π e − t 2 / 2 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 2 π ​ 1 ​ e − t 2 /2 是标准正态密度函数。因此:
J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz J = ∫ − ∞ z 0 ( ∫ − ∞ z ϕ ( t ) d t ) e c z d z J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz J = ∫ − ∞ z 0 ​ ​ ( ∫ − ∞ z ​ ϕ ( t ) d t ) e cz d z
交换积分次序:对于固定 t t t t ,z z z z 从 t t t t 到 z_0 z 0 z_0 z 0 ​ (因为当 z < t z < t z < t z < t 时,内层积分不贡献)。所以:
J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt J = ∫ − ∞ z 0 ϕ ( t ) ( ∫ t z 0 e c z d z ) d t J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt J = ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( ∫ t z 0 ​ ​ e cz d z ) d t
计算内层积分:
\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right] ∫ t z 0 e c z d z = 1 c [ e c z 0 − e c t ] \int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right] ∫ t z 0 ​ ​ e cz d z = c 1 ​ [ e c z 0 ​ − e c t ]
代入:
J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt J = 1 c ∫ − ∞ z 0 ϕ ( t ) ( e c z 0 − e c t ) d t = 1 c e c z 0 ∫ − ∞ z 0 ϕ ( t ) d t − 1 c ∫ − ∞ z 0 ϕ ( t ) e c t d t J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt J = c 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( e c z 0 ​ − e c t ) d t = c 1 ​ e c z 0 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t − c 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t
现在:
\int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ϕ ( t ) d t = N ( z 0 ) \int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t = N ( z 0 ​ )
计算 \int_{-\infty}^{z_0} \phi(t) e^{c t} dt ∫ − ∞ z 0 ϕ ( t ) e c t d t \int_{-\infty}^{z_0} \phi(t) e^{c t} dt ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t : 注意 \phi(t) e^{c t} = \frac{1}{\sqrt{2\pi}} e^{-t^2/2 + c t} = e^{c^2 / 2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(t - c)^2 / 2} = e^{c^2 / 2} \phi(t - c) ϕ ( t ) e c t = 1 2 π e − t 2 / 2 + c t = e c 2 / 2 ⋅ 1 2 π e − ( t − c ) 2 / 2 = e c 2 / 2 ϕ ( t − c ) \phi(t) e^{c t} = \frac{1}{\sqrt{2\pi}} e^{-t^2/2 + c t} = e^{c^2 / 2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(t - c)^2 / 2} = e^{c^2 / 2} \phi(t - c) ϕ ( t ) e c t = 2 π ​ 1 ​ e − t 2 /2 + c t = e c 2 /2 ⋅ 2 π ​ 1 ​ e − ( t − c ) 2 /2 = e c 2 /2 ϕ ( t − c ) ,所以:
\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c) ∫ − ∞ z 0 ϕ ( t ) e c t d t = e c 2 / 2 ∫ − ∞ z 0 ϕ ( t − c ) d t = e c 2 / 2 N ( z 0 − c ) \int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c) ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t = e c 2 /2 ∫ − ∞ z 0 ​ ​ ϕ ( t − c ) d t = e c 2 /2 N ( z 0 ​ − c )
因此:
J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] J = 1 c [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] J = c 1 ​ [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
步骤3: 代入回 I_1 I 1 I_1 I 1 ​
代入 J J J J 到 I_1 I 1 I_1 I 1 ​ :
I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 = σ T e A ⋅ 1 c [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 ​ = σ T ​ e A ⋅ c 1 ​ [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
由于 c = \sigma \sqrt{T} c = σ T c = \sigma \sqrt{T} c = σ T ​ ,有 \sigma \sqrt{T} / c = 1 σ T / c = 1 \sigma \sqrt{T} / c = 1 σ T ​ / c = 1 ,所以:
I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 = e A [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 ​ = e A [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
现在计算指数项:
c z_0 = \sigma \sqrt{T} \cdot \frac{\log L - A}{\sigma \sqrt{T}} = \log L - A c z 0 = σ T ⋅ log ⁡ L − A σ T = log ⁡ L − A c z_0 = \sigma \sqrt{T} \cdot \frac{\log L - A}{\sigma \sqrt{T}} = \log L - A c z 0 ​ = σ T ​ ⋅ σ T ​ l o g L − A ​ = log L − A ,所以 e^{c z_0} = e^{\log L - A} = L / e^{A} e c z 0 = e log ⁡ L − A = L / e A e^{c z_0} = e^{\log L - A} = L / e^{A} e c z 0 ​ = e l o g L − A = L / e A
e^{c^2 / 2} = e^{(\sigma^2 T) / 2} e c 2 / 2 = e ( σ 2 T ) / 2 e^{c^2 / 2} = e^{(\sigma^2 T) / 2} e c 2 /2 = e ( σ 2 T ) /2
z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 = log ⁡ L − A σ T z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 ​ = σ T ​ l o g L − A ​
z_0 - c = \frac{\log L - A}{\sigma \sqrt{T}} - \sigma \sqrt{T} = \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} z 0 − c = log ⁡ L − A σ T − σ T = log ⁡ L − A − σ 2 T σ T z_0 - c = \frac{\log L - A}{\sigma \sqrt{T}} - \sigma \sqrt{T} = \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} z 0 ​ − c = σ T ​ l o g L − A ​ − σ T ​ = σ T ​ l o g L − A − σ 2 T ​
代入:
I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) I 1 = e A [ L e A N ( z 0 ) − e σ 2 T / 2 N ( log ⁡ L − A − σ 2 T σ T ) ] = L N ( z 0 ) − e A + σ 2 T / 2 N ( log ⁡ L − A − σ 2 T σ T ) I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) I 1 ​ = e A [ e A L ​ N ( z 0 ​ ) − e σ 2 T /2 N ( σ T ​ log L − A − σ 2 T ​ ) ] = L N ( z 0 ​ ) − e A + σ 2 T /2 N ( σ T ​ log L − A − σ 2 T ​ )
步骤4: 简化表达式
回忆 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T 和 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,所以:
A + \frac{\sigma^2 T}{2} = \log S(0) + \mu T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q) T A + σ 2 T 2 = log ⁡ S ( 0 ) + μ T + σ 2 T 2 = log ⁡ S ( 0 ) + ( r − q − σ 2 2 ) T + σ 2 T 2 = log ⁡ S ( 0 ) + ( r − q ) T A + \frac{\sigma^2 T}{2} = \log S(0) + \mu T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2} = \log S(0) + (r - q) T A + 2 σ 2 T ​ = log S ( 0 ) + μ T + 2 σ 2 T ​ = log S ( 0 ) + ( r − q − 2 σ 2 ​ ) T + 2 σ 2 T ​ = log S ( 0 ) + ( r − q ) T
因此:
e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T} e A + σ 2 T / 2 = e log ⁡ S ( 0 ) + ( r − q ) T = S ( 0 ) e ( r − q ) T e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T} e A + σ 2 T /2 = e l o g S ( 0 ) + ( r − q ) T = S ( 0 ) e ( r − q ) T
另外,z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 = log ⁡ L − A σ T z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 ​ = σ T ​ l o g L − A ​ ,所以最终:
I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 = e A + σ 2 T 2 N ( log ⁡ L − A − σ 2 T σ T ) − L N ( log ⁡ L − A σ T ) I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 ​ = e A + 2 σ 2 T ​ N ( σ T ​ log L − A − σ 2 T ​ ) − L N ( σ T ​ log L − A ​ )
代入 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T ,并注意到 \mu = r - q - \sigma^2/2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2/2 μ = r − q − σ 2 /2 ,所以 A + \frac{\sigma^2 T}{2} = \log S(0) + (r-q)T A + σ 2 T 2 = log ⁡ S ( 0 ) + ( r − q ) T A + \frac{\sigma^2 T}{2} = \log S(0) + (r-q)T A + 2 σ 2 T ​ = log S ( 0 ) + ( r − q ) T 。
因此:I_1=LN(\frac{\log \frac{L}{S(0)}-(r-q-\frac{1}{2}\sigma^2) T}{\sigma\sqrt{T}})-S(0)e^{(r-q)T}N(\frac{\log{\frac{L}{S(0)}-(r-q+\frac{1}{2}\sigma^2)T}}{\sigma\sqrt{T}}) I 1 = L N ( log ⁡ L S ( 0 ) − ( r − q − 1 2 σ 2 ) T σ T ) − S ( 0 ) e ( r − q ) T N ( log ⁡ L S ( 0 ) − ( r − q + 1 2 σ 2 ) T σ T ) I_1=LN(\frac{\log \frac{L}{S(0)}-(r-q-\frac{1}{2}\sigma^2) T}{\sigma\sqrt{T}})-S(0)e^{(r-q)T}N(\frac{\log{\frac{L}{S(0)}-(r-q+\frac{1}{2}\sigma^2)T}}{\sigma\sqrt{T}}) I 1 ​ = L N ( σ T ​ log S ( 0 ) L ​ − ( r − q − 2 1 ​ σ 2 ) T ​ ) − S ( 0 ) e ( r − q ) T N ( σ T ​ log S ( 0 ) L ​ − ( r − q + 2 1 ​ σ 2 ) T ​ )
即
I_1 = L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 1 = L N ( − d 2 ) − S ( 0 ) e ( r − q ) T N ( − d 1 ) I_1 = L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 1 ​ = L N ( − d 2 ​ ) − S ( 0 ) e ( r − q ) T N ( − d 1 ​ )
其中:
d_1 = \frac{ \log(S(0)/L) + (r-q+\sigma^2/2)T }{ \sigma \sqrt{T} } d 1 = log ⁡ ( S ( 0 ) / L ) + ( r − q + σ 2 / 2 ) T σ T d_1 = \frac{ \log(S(0)/L) + (r-q+\sigma^2/2)T }{ \sigma \sqrt{T} } d 1 ​ = σ T ​ l o g ( S ( 0 ) / L ) + ( r − q + σ 2 /2 ) T ​ (如公式8.30中的定义),
d_2 = d_1 - \sigma \sqrt{T} = \frac{ \log(S(0)/L) + (r-q-\sigma^2/2)T }{ \sigma \sqrt{T} } d 2 = d 1 − σ T = log ⁡ ( S ( 0 ) / L ) + ( r − q − σ 2 / 2 ) T σ T d_2 = d_1 - \sigma \sqrt{T} = \frac{ \log(S(0)/L) + (r-q-\sigma^2/2)T }{ \sigma \sqrt{T} } d 2 ​ = d 1 ​ − σ T ​ = σ T ​ l o g ( S ( 0 ) / L ) + ( r − q − σ 2 /2 ) T ​ 。
对于 I_2 I 2 I_2 I 2 ​ :
I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 = ∫ 0 L ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ )   d x I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 ​ = ∫ 0 L ​ ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ ) d x
其中 d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ = log ⁡ ( x / S ( 0 ) ) + μ T σ T d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ ​ = σ T ​ l o g ( x / S ( 0 )) + μ T ​ 。
令 y = \log x y = log ⁡ x y = \log x y = log x ,则 x = e^y x = e y x = e^y x = e y ,dx = e^y dy d x = e y d y dx = e^y dy d x = e y d y ,且 \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y/\sigma^2} S(0)^{-2\mu/\sigma^2} ( x S ( 0 ) ) 2 μ / σ 2 = e 2 μ y / σ 2 S ( 0 ) − 2 μ / σ 2 \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y/\sigma^2} S(0)^{-2\mu/\sigma^2} ( S ( 0 ) x ​ ) 2 μ / σ 2 = e 2 μ y / σ 2 S ( 0 ) − 2 μ / σ 2 。
所以:
I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}\left( \frac{y - \log S(0) + \mu T}{\sigma \sqrt{T}} \right) dy I 2 = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ log ⁡ L e y ( 1 + 2 μ / σ 2 ) N ( y − log ⁡ S ( 0 ) + μ T σ T ) d y I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}\left( \frac{y - \log S(0) + \mu T}{\sigma \sqrt{T}} \right) dy I 2 ​ = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ l o g L ​ e y ( 1 + 2 μ / σ 2 ) N ( σ T ​ y − log S ( 0 ) + μ T ​ ) d y
令 B = \log S(0) - \mu T B = log ⁡ S ( 0 ) − μ T B = \log S(0) - \mu T B = log S ( 0 ) − μ T ,则 d'_x = \frac{y - B}{\sigma \sqrt{T}} d x ′ = y − B σ T d'_x = \frac{y - B}{\sigma \sqrt{T}} d x ′ ​ = σ T ​ y − B ​ 。
类似地,通过变量代换和完成平方,最终可得:
I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1) I 2 = σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) S ( 0 ) e ( r − q ) T N ( − d 1 ) I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1) I 2 ​ = 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ S ( 0 ) e ( r − q ) T N ( − d 1 ​ )
其中 d_2' = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } d 2 ′ = log ⁡ ( L / S ( 0 ) ) + μ T σ T d_2' = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } d 2 ′ ​ = σ T ​ l o g ( L / S ( 0 )) + μ T ​ (注意与公式8.30中的 d_2' d 2 ′ d_2' d 2 ′ ​ 一致,因为 \mu = r-q-\sigma^2/2 μ = r − q − σ 2 / 2 \mu = r-q-\sigma^2/2 μ = r − q − σ 2 /2 ,所以 d_2' = \frac{ \log(L/S(0)) + (r-q-\sigma^2/2)T }{ \sigma \sqrt{T} } d 2 ′ = log ⁡ ( L / S ( 0 ) ) + ( r − q − σ 2 / 2 ) T σ T d_2' = \frac{ \log(L/S(0)) + (r-q-\sigma^2/2)T }{ \sigma \sqrt{T} } d 2 ′ ​ = σ T ​ l o g ( L / S ( 0 )) + ( r − q − σ 2 /2 ) T ​ )。
组合结果 :
\begin{aligned}
\int_0^L P(z \leq x) \, dx =& I_1 + I_2 \\
=& L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
&- \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)
\end{aligned} ∫ 0 L P ( z ≤ x )   d x = I 1 + I 2 = L N ( − d 2 ) − S ( 0 ) e ( r − q ) T N ( − d 1 ) + σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) S ( 0 ) e ( r − q ) T N ( − d 1 ) \begin{aligned}
\int_0^L P(z \leq x) \, dx =& I_1 + I_2 \\
=& L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
&- \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1)
\end{aligned} ∫ 0 L ​ P ( z ≤ x ) d x = = ​ I 1 ​ + I 2 ​ L N ( − d 2 ​ ) − S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) + 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) ​
\mathbb{E}^Q [\min(z, L)] = L - I_1 - I_2 = L - \left[ L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) + \cdots \right] E Q [ min ⁡ ( z , L ) ] = L − I 1 − I 2 = L − [ L N ( − d 2 ) − S ( 0 ) e ( r − q ) T N ( − d 1 ) + ⋯   ] \mathbb{E}^Q [\min(z, L)] = L - I_1 - I_2 = L - \left[ L \mathrm{N}(-d_2)-S(0) e^{(r-q)T} \mathrm{N}(-d_1) + \cdots \right] E Q [ min ( z , L )] = L − I 1 ​ − I 2 ​ = L − [ L N ( − d 2 ​ ) − S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) + ⋯ ]
简化后:
\begin{aligned}
\mathbb{E}^Q [\min(z, L)] =& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
\end{aligned} E Q [ min ⁡ ( z , L ) ] = L N ( d 2 ) + S ( 0 ) e ( r − q ) T N ( − d 1 ) [ 1 + σ 2 2 ( r − q ) ] − σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) \begin{aligned}
\mathbb{E}^Q [\min(z, L)] =& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
\end{aligned} E Q [ min ( z , L )] = ​ L N ( d 2 ​ ) + S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) [ 1 + 2 ( r − q ) σ 2 ​ ] − 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) ​
贴现并得期权价值 :
现在计算 e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] e − r T E Q [ min ⁡ ( z , S min ⁡ ) ] e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] e − r T E Q [ min ( z , S m i n ​ )] :
\begin{aligned}
e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] = e^{-rT} [ & \\
& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
]
\end{aligned} e − r T E Q [ min ⁡ ( z , S min ⁡ ) ] = e − r T [ L N ( d 2 ) + S ( 0 ) e ( r − q ) T N ( − d 1 ) [ 1 + σ 2 2 ( r − q ) ] − σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) ] \begin{aligned}
e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] = e^{-rT} [ & \\
& L \mathrm{N}(d_2)\\
&+ S(0) e^{(r-q)T} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') \\
]
\end{aligned} e − r T E Q [ min ( z , S m i n ​ )] = e − r T [ ] ​ L N ( d 2 ​ ) + S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) [ 1 + 2 ( r − q ) σ 2 ​ ] − 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) ​
简化:
\begin{aligned}
= & e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
\end{aligned} = e − r T L N ( d 2 ) + S ( 0 ) e − q T N ( − d 1 ) [ 1 + σ 2 2 ( r − q ) ] − σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ) \begin{aligned}
= & e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
\end{aligned} = ​ e − r T L N ( d 2 ​ ) + S ( 0 ) e − qT N ( − d 1 ​ ) [ 1 + 2 ( r − q ) σ 2 ​ ] − 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ​ ) ​
V = e^{-qT} S(0)N(d_1) - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] V = e − q T S ( 0 ) N ( d 1 ) − e − r T E Q [ min ⁡ ( z , S min ⁡ ) ] V = e^{-qT} S(0)N(d_1) - e^{-rT} \mathbb{E}^Q [\min(z, S_{\min})] V = e − qT S ( 0 ) N ( d 1 ​ ) − e − r T E Q [ min ( z , S m i n ​ )]
所以:
\begin{aligned}
V = e^{-qT} S(0) - [ & \\
& e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
]
\end{aligned} V = e − q T S ( 0 ) − [ e − r T L N ( d 2 ) + S ( 0 ) e − q T N ( − d 1 ) [ 1 + σ 2 2 ( r − q ) ] − σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ) ] \begin{aligned}
V = e^{-qT} S(0) - [ & \\
& e^{-rT}L \mathrm{N}(d_2)\\
&+ S(0) e^{-qT} \mathrm{N}(-d_1) \left[ 1 + \frac{\sigma^2}{2(r-q)} \right] \\
&- \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
]
\end{aligned} V = e − qT S ( 0 ) − [ ] ​ e − r T L N ( d 2 ​ ) + S ( 0 ) e − qT N ( − d 1 ​ ) [ 1 + 2 ( r − q ) σ 2 ​ ] − 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ​ ) ​
注意到 1 - \mathrm{N}(-d_1) = \mathrm{N}(d_1) 1 − N ( − d 1 ) = N ( d 1 ) 1 - \mathrm{N}(-d_1) = \mathrm{N}(d_1) 1 − N ( − d 1 ​ ) = N ( d 1 ​ ) ,所以:
\begin{aligned}
V =& e^{-qT} S(0)N(d_1) - e^{-rT}L \mathrm{N}(d_2)\\
&- S(0) e^{-qT} \mathrm{N}(-d_1) \frac{\sigma^2}{2(r-q)} \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
\end{aligned} V = e − q T S ( 0 ) N ( d 1 ) − e − r T L N ( d 2 ) − S ( 0 ) e − q T N ( − d 1 ) σ 2 2 ( r − q ) + σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ) \begin{aligned}
V =& e^{-qT} S(0)N(d_1) - e^{-rT}L \mathrm{N}(d_2)\\
&- S(0) e^{-qT} \mathrm{N}(-d_1) \frac{\sigma^2}{2(r-q)} \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT}S(0) \mathrm{N}(d_2') \\
\end{aligned} V = ​ e − qT S ( 0 ) N ( d 1 ​ ) − e − r T L N ( d 2 ​ ) − S ( 0 ) e − qT N ( − d 1 ​ ) 2 ( r − q ) σ 2 ​ + 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ​ ) ​
代入S_{min}=L S m i n = L S_{min}=L S min ​ = L ,得到
\begin{aligned}
V = & e^{-qT} S(0) \mathrm{N}(d_1) - e^{-rT} S_{\min} \mathrm{N}(d_2) \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{S_{\min}}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT} S(0) \mathrm{N}(d_2') \\
&- \frac{\sigma^2}{2(r-q)} e^{-qT} S(0) \mathrm{N}(-d_1)
\end{aligned} V = e − q T S ( 0 ) N ( d 1 ) − e − r T S min ⁡ N ( d 2 ) + σ 2 2 ( r − q ) ( S min ⁡ S ( 0 ) ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) e − q T S ( 0 ) N ( − d 1 ) \begin{aligned}
V = & e^{-qT} S(0) \mathrm{N}(d_1) - e^{-rT} S_{\min} \mathrm{N}(d_2) \\
&+ \frac{\sigma^2}{2(r-q)} \left( \frac{S_{\min}}{S(0)} \right)^{2(r-q)/\sigma^2} e^{-rT} S(0) \mathrm{N}(d_2') \\
&- \frac{\sigma^2}{2(r-q)} e^{-qT} S(0) \mathrm{N}(-d_1)
\end{aligned} V = ​ e − qT S ( 0 ) N ( d 1 ​ ) − e − r T S m i n ​ N ( d 2 ​ ) + 2 ( r − q ) σ 2 ​ ( S ( 0 ) S m i n ​ ​ ) 2 ( r − q ) / σ 2 e − r T S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ e − qT S ( 0 ) N ( − d 1 ​ ) ​
这正是公式(8.30)。
其中
d_1=\frac{\log (\frac{S(0)}{S_{min}})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma
\sqrt{T}},\quad d_2=d_1-\sigma\sqrt{T} d 1 = log ⁡ ( S ( 0 ) S m i n ) + ( r − q + 1 2 σ 2 ) T σ T , d 2 = d 1 − σ T d_1=\frac{\log (\frac{S(0)}{S_{min}})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma
\sqrt{T}},\quad d_2=d_1-\sigma\sqrt{T} d 1 ​ = σ T ​ log ( S min ​ S ( 0 ) ​ ) + ( r − q + 2 1 ​ σ 2 ) T ​ , d 2 ​ = d 1 ​ − σ T ​
d_1'=\frac{\log (\frac{S_{min}}{S(0)})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma
\sqrt{T}},\quad d_2'=d_1-\sigma\sqrt{T} d 1 ′ = log ⁡ ( S m i n S ( 0 ) ) + ( r − q + 1 2 σ 2 ) T σ T , d 2 ′ = d 1 − σ T d_1'=\frac{\log (\frac{S_{min}}{S(0)})+(r-q+\frac{1}{2}\sigma^2)T}{\sigma
\sqrt{T}},\quad d_2'=d_1-\sigma\sqrt{T} d 1 ′ ​ = σ T ​ log ( S ( 0 ) S min ​ ​ ) + ( r − q + 2 1 ​ σ 2 ) T ​ , d 2 ′ ​ = d 1 ​ − σ T ​
总结
附录B提供了几何布朗运动最小值 z z z z 的分布函数(B.2节),这是计算 \mathbb{E}^Q [\min(z, S_{\min})] E Q [ min ⁡ ( z , S min ⁡ ) ] \mathbb{E}^Q [\min(z, S_{\min})] E Q [ min ( z , S m i n ​ )] 的基础。
通过积分计算 P(z \leq x) P ( z ≤ x ) P(z \leq x) P ( z ≤ x ) 的期望,并利用风险中性定价原理,得到期权价值。
推导中涉及变量代换、完成平方和测度变换(如Girsanov定理),这些在附录B中有详细说明。
此推导展示了如何将理论概率工具应用于金融衍生品定价。
证明E[(L−z)^+]=∫_0^LP(z≤x)dx E [ ( L − z ) + ] = ∫ 0 L P ( z ≤ x ) d x E[(L−z)^+]=∫_0^LP(z≤x)dx E [( L − z ) + ] = ∫ 0 L ​ P ( z ≤ x ) d x
推导步骤
定义非负随机变量 : 令 Y = (L - z)^+ = \max(L - z, 0) Y = ( L − z ) + = max ⁡ ( L − z , 0 ) Y = (L - z)^+ = \max(L - z, 0) Y = ( L − z ) + = max ( L − z , 0 ) 。由于 z z z z 是非负随机变量(在期权定价上下文中,z z z z 是资产价格的最小值,因此 z \geq 0 z ≥ 0 z \geq 0 z ≥ 0 ),所以 Y Y Y Y 也是非负随机变量。
利用非负随机变量的期望公式 : 对于任何非负随机变量 Y Y Y Y ,其期望可以表示为:
E[Y] = \int_0^\infty P(Y > y) \, dy E [ Y ] = ∫ 0 ∞ P ( Y > y )   d y E[Y] = \int_0^\infty P(Y > y) \, dy E [ Y ] = ∫ 0 ∞ ​ P ( Y > y ) d y
这个公式是概率论中的标准结果,可以通过交换积分次序证明(例如,使用 Fubini 定理)。
确定积分上限 :
由于 Y = (L - z)^+ \leq L Y = ( L − z ) + ≤ L Y = (L - z)^+ \leq L Y = ( L − z ) + ≤ L (因为 z \geq 0 z ≥ 0 z \geq 0 z ≥ 0 ,所以 L - z \leq L L − z ≤ L L - z \leq L L − z ≤ L ,且取正部后 Y \leq L Y ≤ L Y \leq L Y ≤ L ),因此当 y > L y > L y > L y > L 时,P(Y > y) = 0 P ( Y > y ) = 0 P(Y > y) = 0 P ( Y > y ) = 0 。这意味着积分上限可以从 \infty ∞ \infty ∞ 改为 L L L L :
E[Y] = \int_0^L P(Y > y) \, dy E [ Y ] = ∫ 0 L P ( Y > y )   d y E[Y] = \int_0^L P(Y > y) \, dy E [ Y ] = ∫ 0 L ​ P ( Y > y ) d y
计算 P(Y > y) P ( Y > y ) P(Y > y) P ( Y > y ) :
事件 Y > y Y > y Y > y Y > y 等价于 (L - z)^+ > y ( L − z ) + > y (L - z)^+ > y ( L − z ) + > y 。由于 y \geq 0 y ≥ 0 y \geq 0 y ≥ 0 ,这可以分解为:
(L - z)^+ > y \iff L - z > y \quad \text{(因为如果 } L - z \leq 0, \text{ 则 } (L - z)^+ = 0 \leq y \text{)} ( L − z ) + > y    ⟺    L − z > y (因为如果 L − z ≤ 0 , 则 ( L − z ) + = 0 ≤ y ) (L - z)^+ > y \iff L - z > y \quad \text{(因为如果 } L - z \leq 0, \text{ 则 } (L - z)^+ = 0 \leq y \text{)} ( L − z ) + > y ⟺ L − z > y (因为如果 L − z ≤ 0 , 则 ( L − z ) + = 0 ≤ y )
​ 因此,P(Y > y) = P(L - z > y) = P(z < L - y) P ( Y > y ) = P ( L − z > y ) = P ( z < L − y ) P(Y > y) = P(L - z > y) = P(z < L - y) P ( Y > y ) = P ( L − z > y ) = P ( z < L − y ) 。
变量代换 :
令 x = L - y x = L − y x = L - y x = L − y ,则当 y y y y 从 0 到 L L L L 时,x x x x 从 L L L L 到 0。同时,dy = -dx d y = − d x dy = -dx d y = − d x 。代入积分:
E[Y] = \int_0^L P(z < L - y) \, dy = \int_{x=L}^{x=0} P(z < x) (-dx) = \int_0^L P(z < x) \, dx E [ Y ] = ∫ 0 L P ( z < L − y )   d y = ∫ x = L x = 0 P ( z < x ) ( − d x ) = ∫ 0 L P ( z < x )   d x E[Y] = \int_0^L P(z < L - y) \, dy = \int_{x=L}^{x=0} P(z < x) (-dx) = \int_0^L P(z < x) \, dx E [ Y ] = ∫ 0 L ​ P ( z < L − y ) d y = ∫ x = L x = 0 ​ P ( z < x ) ( − d x ) = ∫ 0 L ​ P ( z < x ) d x
​ 这里,积分上下限交换时,负号被抵消。
处理概率相等问题 :
在期权定价上下文中,z z z z 通常是连续随机变量(例如,几何布朗运动的最小值),因此有 P(z < x) = P(z \leq x) P ( z < x ) = P ( z ≤ x ) P(z < x) = P(z \leq x) P ( z < x ) = P ( z ≤ x ) ,因为连续随机变量在一点的概率为零。因此:
E[Y] = \int_0^L P(z \leq x) \, dx E [ Y ] = ∫ 0 L P ( z ≤ x )   d x E[Y] = \int_0^L P(z \leq x) \, dx E [ Y ] = ∫ 0 L ​ P ( z ≤ x ) d x
​ 即:
E[(L - z)^+] = \int_0^L P(z \leq x) \, dx E [ ( L − z ) + ] = ∫ 0 L P ( z ≤ x )   d x E[(L - z)^+] = \int_0^L P(z \leq x) \, dx E [( L − z ) + ] = ∫ 0 L ​ P ( z ≤ x ) d x
## 在期权定价中的应用
在第2张图片中,浮动执行价格回望看涨期权的收益涉及 \min(z, S_{\min}) min ⁡ ( z , S min ⁡ ) \min(z, S_{\min}) min ( z , S m i n ​ ) ,其中 S_{\min} S min ⁡ S_{\min} S m i n ​ 是历史最小值。注意到:
\min(z, S_{\min}) = S_{\min} - (S_{\min} - z)^+ min ⁡ ( z , S min ⁡ ) = S min ⁡ − ( S min ⁡ − z ) + \min(z, S_{\min}) = S_{\min} - (S_{\min} - z)^+ min ( z , S m i n ​ ) = S m i n ​ − ( S m i n ​ − z ) +
因此,期望为:
E[\min(z, S_{\min})] = S_{\min} - E[(S_{\min} - z)^+] E [ min ⁡ ( z , S min ⁡ ) ] = S min ⁡ − E [ ( S min ⁡ − z ) + ] E[\min(z, S_{\min})] = S_{\min} - E[(S_{\min} - z)^+] E [ min ( z , S m i n ​ )] = S m i n ​ − E [( S m i n ​ − z ) + ]
利用上述结果,有:
E[\min(z, S_{\min})] = S_{\min} - \int_0^{S_{\min}} P(z \leq x) \, dx E [ min ⁡ ( z , S min ⁡ ) ] = S min ⁡ − ∫ 0 S min ⁡ P ( z ≤ x )   d x E[\min(z, S_{\min})] = S_{\min} - \int_0^{S_{\min}} P(z \leq x) \, dx E [ min ( z , S m i n ​ )] = S m i n ​ − ∫ 0 S m i n ​ ​ P ( z ≤ x ) d x
这正好对应了图片中“the value at date 0 of receiving \min(z, S_{\min}) min ⁡ ( z , S min ⁡ ) \min(z, S_{\min}) min ( z , S m i n ​ ) at date T”的计算基础。附录B.2提供了 P(z \leq x) P ( z ≤ x ) P(z \leq x) P ( z ≤ x ) 的具体表达式,从而允许计算这个积分。
总结
这个等式的成立依赖于非负随机变量的期望公式和变量代换,并假设 z z z z 是连续随机变量。在回望期权定价中,它被用于将问题转化为对最小值分布的积分计算。
证明E[X] = \int_{0}^{\infty} P(X > x) \, dx E [ X ] = ∫ 0 ∞ P ( X > x )   d x E[X] = \int_{0}^{\infty} P(X > x) \, dx E [ X ] = ∫ 0 ∞ ​ P ( X > x ) d x
公式概述
对于任意非负随机变量 X X X X (即 P(X \geq 0) = 1 P ( X ≥ 0 ) = 1 P(X \geq 0) = 1 P ( X ≥ 0 ) = 1 ),其期望 E[X] E [ X ] E[X] E [ X ] 可以表示为:
E[X] = \int_{0}^{\infty} P(X > x) \, dx E [ X ] = ∫ 0 ∞ P ( X > x )   d x E[X] = \int_{0}^{\infty} P(X > x) \, dx E [ X ] = ∫ 0 ∞ ​ P ( X > x ) d x
其中 P(X > x) = 1 - F(x) P ( X > x ) = 1 − F ( x ) P(X > x) = 1 - F(x) P ( X > x ) = 1 − F ( x ) ,F(x) F ( x ) F(x) F ( x ) 是 X X X X 的累积分布函数(CDF)。这个公式的核心优势在于:它避免了直接处理概率密度函数(PDF)的复杂性,特别适用于PDF难以求导或定义的场景 。
公式的证明
证明主要分为两种思路:分部积分法 (适用于连续随机变量)和积分交换法 (通用性强)。以下是基于搜索结果的详细推导。
方法一:分部积分法(针对连续型随机变量)
写出期望的积分表达式 :假设 X X X X 是连续型非负随机变量,其概率密度函数为 f(x) f ( x ) f(x) f ( x ) ,则期望为:
E[X] = \int_0^{\infty} x f(x) \, dx E [ X ] = ∫ 0 ∞ x f ( x )   d x E[X] = \int_0^{\infty} x f(x) \, dx E [ X ] = ∫ 0 ∞ ​ x f ( x ) d x
应用分部积分法 :
令 u = x u = x u = x u = x ,则 du = dx d u = d x du = dx d u = d x 。
令 dv = f(x)dx d v = f ( x ) d x dv = f(x)dx d v = f ( x ) d x ,则 v = \int f(x) \, dx = F(x) v = ∫ f ( x )   d x = F ( x ) v = \int f(x) \, dx = F(x) v = ∫ f ( x ) d x = F ( x ) (这里 v v v v 是 f(x) f ( x ) f(x) f ( x ) 的一个原函数)。
代入分部积分公式 \int u \, dv = uv - \int v \, du ∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du ∫ u d v = uv − ∫ v d u ,我们有:
E[X] = \int_0^{\infty} x f(x) \, dx = \left[ x F(x) \right]_{0}^{\infty} - \int_0^{\infty} F(x) \, dx E [ X ] = ∫ 0 ∞ x f ( x )   d x = [ x F ( x ) ] 0 ∞ − ∫ 0 ∞ F ( x )   d x E[X] = \int_0^{\infty} x f(x) \, dx = \left[ x F(x) \right]_{0}^{\infty} - \int_0^{\infty} F(x) \, dx E [ X ] = ∫ 0 ∞ ​ x f ( x ) d x = [ x F ( x ) ] 0 ∞ ​ − ∫ 0 ∞ ​ F ( x ) d x
关键:处理广义积分与边界项 上面的等式是对于上限为 b b b b 的普通积分成立,我们需要取极限 b \to \infty b → ∞ b \to \infty b → ∞ 来考察广义积分:
E[X] = \lim_{b \to \infty} \left( \int_0^{b} x f(x) \, dx \right) = \lim_{b \to \infty} \left( \left[ x F(x) \right]_{0}^{b} - \int_0^{b} F(x) \, dx \right) E [ X ] = lim ⁡ b → ∞ ( ∫ 0 b x f ( x )   d x ) = lim ⁡ b → ∞ ( [ x F ( x ) ] 0 b − ∫ 0 b F ( x )   d x ) E[X] = \lim_{b \to \infty} \left( \int_0^{b} x f(x) \, dx \right) = \lim_{b \to \infty} \left( \left[ x F(x) \right]_{0}^{b} - \int_0^{b} F(x) \, dx \right) E [ X ] = b → ∞ lim ​ ( ∫ 0 b ​ x f ( x ) d x ) = b → ∞ lim ​ ( [ x F ( x ) ] 0 b ​ − ∫ 0 b ​ F ( x ) d x )
化简为:
E[X] = \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) E [ X ] = lim ⁡ b → ∞ ( b F ( b ) − ∫ 0 b F ( x )   d x ) E[X] = \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) E [ X ] = b → ∞ lim ​ ( b F ( b ) − ∫ 0 b ​ F ( x ) d x )
现在,我们将 E[X] = \int_0^{\infty} (1 - F(x)) \, dx E [ X ] = ∫ 0 ∞ ( 1 − F ( x ) )   d x E[X] = \int_0^{\infty} (1 - F(x)) \, dx E [ X ] = ∫ 0 ∞ ​ ( 1 − F ( x )) d x 的等式两边同时考虑进来。为了证明两者相等,我们只需证明:
\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) = \int_0^{\infty} (1 - F(x)) \, dx lim ⁡ b → ∞ ( b F ( b ) − ∫ 0 b F ( x )   d x ) = ∫ 0 ∞ ( 1 − F ( x ) )   d x \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx \right) = \int_0^{\infty} (1 - F(x)) \, dx b → ∞ lim ​ ( b F ( b ) − ∫ 0 b ​ F ( x ) d x ) = ∫ 0 ∞ ​ ( 1 − F ( x )) d x
这等价于证明:
\lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx - \int_0^{b} (1 - F(x)) \, dx \right) = 0 lim ⁡ b → ∞ ( b F ( b ) − ∫ 0 b F ( x )   d x − ∫ 0 b ( 1 − F ( x ) )   d x ) = 0 \lim_{b \to \infty} \left( b F(b) - \int_0^{b} F(x) \, dx - \int_0^{b} (1 - F(x)) \, dx \right) = 0 b → ∞ lim ​ ( b F ( b ) − ∫ 0 b ​ F ( x ) d x − ∫ 0 b ​ ( 1 − F ( x )) d x ) = 0
注意到 \int_0^{b} F(x) \, dx + \int_0^{b} (1 - F(x)) \, dx = \int_0^{b} 1 \, dx = b ∫ 0 b F ( x )   d x + ∫ 0 b ( 1 − F ( x ) )   d x = ∫ 0 b 1   d x = b \int_0^{b} F(x) \, dx + \int_0^{b} (1 - F(x)) \, dx = \int_0^{b} 1 \, dx = b ∫ 0 b ​ F ( x ) d x + ∫ 0 b ​ ( 1 − F ( x )) d x = ∫ 0 b ​ 1 d x = b ,所以上式变为:
\lim_{b \to \infty} (b F(b) - b) = \lim_{b \to \infty} b (F(b) - 1) = -\lim_{b \to \infty} b (1 - F(b)) lim ⁡ b → ∞ ( b F ( b ) − b ) = lim ⁡ b → ∞ b ( F ( b ) − 1 ) = − lim ⁡ b → ∞ b ( 1 − F ( b ) ) \lim_{b \to \infty} (b F(b) - b) = \lim_{b \to \infty} b (F(b) - 1) = -\lim_{b \to \infty} b (1 - F(b)) b → ∞ lim ​ ( b F ( b ) − b ) = b → ∞ lim ​ b ( F ( b ) − 1 ) = − b → ∞ lim ​ b ( 1 − F ( b ))
因此,整个证明成立的关键就在于证明 \lim_{b \to \infty} b (1 - F(b)) = 0 lim ⁡ b → ∞ b ( 1 − F ( b ) ) = 0 \lim_{b \to \infty} b (1 - F(b)) = 0 lim b → ∞ ​ b ( 1 − F ( b )) = 0 。而这个结论在 E[X] < \infty E [ X ] < ∞ E[X] < \infty E [ X ] < ∞ 的条件下是成立的,正如我们之前严谨证明的那样。所以,分部积分法的证明思路本身没有问题,但需要最终归结到证明 \lim_{x \to \infty} x (1-F(x)) = 0 lim ⁡ x → ∞ x ( 1 − F ( x ) ) = 0 \lim_{x \to \infty} x (1-F(x)) = 0 lim x → ∞ ​ x ( 1 − F ( x )) = 0 ,而不是我之前错误陈述的 \lim_{x \to \infty} x F(x) = 0 lim ⁡ x → ∞ x F ( x ) = 0 \lim_{x \to \infty} x F(x) = 0 lim x → ∞ ​ x F ( x ) = 0 。
一个更简洁通用的证明方法
由于分部积分法的证明在边界处理上容易令人困惑,这里提供一个基于**交换积分次序(Fubini定理)**的证明,它更简洁、通用,且不涉及棘手的边界项讨论。
证明过程如下:
\begin{aligned} E[X] &= \int_{\Omega} X \, dP \quad &\text{(期望的定义)} \\ &= \int_{\Omega} \left( \int_{0}^{X} 1 \, dx \right) dP \quad &\text{(因为对于固定的 $X>0$, $\int_0^X 1 dx = X$)} \\ &= \int_{\Omega} \left( \int_{0}^{\infty} 1_{\{x < X\}} \, dx \right) dP \quad &\text{($1_{\{x < X\}}$ 是指示函数,当 $x < X$ 时为1,否则为0)} \\ &= \int_{0}^{\infty} \left( \int_{\Omega} 1_{\{x < X\}} \, dP \right) dx \quad &\text{(交换积分次序,由Fubini定理保证)} \\ &= \int_{0}^{\infty} P(X > x) \, dx \quad &\text{(因为 $\int_{\Omega} 1_{\{x < X\}} dP = P(x < X) = P(X > x)$)} \\ &= \int_{0}^{\infty} (1 - F(x)) \, dx \quad &\text{(因为 $P(X > x) = 1 - P(X \le x) = 1 - F(x)$)} \end{aligned} E [ X ] = ∫ Ω X   d P (期望的定义) = ∫ Ω ( ∫ 0 X 1   d x ) d P (因为对于固定的 X > 0 , ∫ 0 X 1 d x = X ) = ∫ Ω ( ∫ 0 ∞ 1 { x < X }   d x ) d P ( 1 { x < X } 是指示函数,当 x < X 时为1,否则为0) = ∫ 0 ∞ ( ∫ Ω 1 { x < X }   d P ) d x (交换积分次序,由Fubini定理保证) = ∫ 0 ∞ P ( X > x )   d x (因为 ∫ Ω 1 { x < X } d P = P ( x < X ) = P ( X > x ) ) = ∫ 0 ∞ ( 1 − F ( x ) )   d x (因为 P ( X > x ) = 1 − P ( X ≤ x ) = 1 − F ( x ) ) \begin{aligned} E[X] &= \int_{\Omega} X \, dP \quad &\text{(期望的定义)} \\ &= \int_{\Omega} \left( \int_{0}^{X} 1 \, dx \right) dP \quad &\text{(因为对于固定的 $X>0$, $\int_0^X 1 dx = X$)} \\ &= \int_{\Omega} \left( \int_{0}^{\infty} 1_{\{x < X\}} \, dx \right) dP \quad &\text{($1_{\{x < X\}}$ 是指示函数,当 $x < X$ 时为1,否则为0)} \\ &= \int_{0}^{\infty} \left( \int_{\Omega} 1_{\{x < X\}} \, dP \right) dx \quad &\text{(交换积分次序,由Fubini定理保证)} \\ &= \int_{0}^{\infty} P(X > x) \, dx \quad &\text{(因为 $\int_{\Omega} 1_{\{x < X\}} dP = P(x < X) = P(X > x)$)} \\ &= \int_{0}^{\infty} (1 - F(x)) \, dx \quad &\text{(因为 $P(X > x) = 1 - P(X \le x) = 1 - F(x)$)} \end{aligned} E [ X ] ​ = ∫ Ω ​ X d P = ∫ Ω ​ ( ∫ 0 X ​ 1 d x ) d P = ∫ Ω ​ ( ∫ 0 ∞ ​ 1 { x < X } ​ d x ) d P = ∫ 0 ∞ ​ ( ∫ Ω ​ 1 { x < X } ​ d P ) d x = ∫ 0 ∞ ​ P ( X > x ) d x = ∫ 0 ∞ ​ ( 1 − F ( x )) d x ​ ( 期望的定义 ) ( 因为对于固定的 X > 0, ∫ 0 X ​ 1 d x = X ) ( 1 { x < X } ​ 是指示函数,当 x < X 时为 1 ,否则为 0) ( 交换积分次序,由 Fubini 定理保证 ) ( 因为 ∫ Ω ​ 1 { x < X } ​ d P = P ( x < X ) = P ( X > x ) ) ( 因为 P ( X > x ) = 1 − P ( X ≤ x ) = 1 − F ( x ) ) ​
这个证明清晰地展示了从期望定义到目标公式的转换过程,逻辑链非常完整,并且适用于连续型和离散型非负随机变量。
方法二:积分交换法(通用证明,适用于连续/离散型)
此方法通过交换积分次序直接推导,不依赖分布类型:
从概率表达式出发 :
\int_{0}^{\infty} P(X > x) \, dx = \int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx ∫ 0 ∞ P ( X > x )   d x = ∫ 0 ∞ [ ∫ x ∞ f ( t )   d t ] d x \int_{0}^{\infty} P(X > x) \, dx = \int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx ∫ 0 ∞ ​ P ( X > x ) d x = ∫ 0 ∞ ​ [ ∫ x ∞ ​ f ( t ) d t ] d x
其中 f(t) f ( t ) f(t) f ( t ) 是 X X X X 的PDF(若是离散型,积分改为求和)。
交换积分次序 (使用Fubini定理): 积分区域是 0 \leq x \leq t < \infty 0 ≤ x ≤ t < ∞ 0 \leq x \leq t < \infty 0 ≤ x ≤ t < ∞ ,交换次序后:
\int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx = \int_{0}^{\infty} \left[ \int_{0}^{t} dx \right] f(t) \, dt = \int_{0}^{\infty} t f(t) \, dt ∫ 0 ∞ [ ∫ x ∞ f ( t )   d t ] d x = ∫ 0 ∞ [ ∫ 0 t d x ] f ( t )   d t = ∫ 0 ∞ t f ( t )   d t \int_{0}^{\infty} \left[ \int_{x}^{\infty} f(t) \, dt \right] dx = \int_{0}^{\infty} \left[ \int_{0}^{t} dx \right] f(t) \, dt = \int_{0}^{\infty} t f(t) \, dt ∫ 0 ∞ ​ [ ∫ x ∞ ​ f ( t ) d t ] d x = ∫ 0 ∞ ​ [ ∫ 0 t ​ d x ] f ( t ) d t = ∫ 0 ∞ ​ t f ( t ) d t
得到期望 :
\int_{0}^{\infty} t f(t) \, dt = E[X] ∫ 0 ∞ t f ( t )   d t = E [ X ] \int_{0}^{\infty} t f(t) \, dt = E[X] ∫ 0 ∞ ​ t f ( t ) d t = E [ X ]
因此原式得证。 离散型随机变量的证明类似 :将积分改为求和,利用 P(X > x) = \sum_{k > x} P(X = k) P ( X > x ) = ∑ k > x P ( X = k ) P(X > x) = \sum_{k > x} P(X = k) P ( X > x ) = ∑ k > x ​ P ( X = k ) ,然后交换求和次序即可。
⚠️ 注意事项
非负性要求 :公式仅适用于 X \geq 0 X ≥ 0 X \geq 0 X ≥ 0 。如果 X X X X 可取负值,需要调整积分下限或使用 E[X] = \int_{0}^{\infty} P(X > x) \, dx - \int_{-\infty}^{0} P(X \leq x) \, dx E [ X ] = ∫ 0 ∞ P ( X > x )   d x − ∫ − ∞ 0 P ( X ≤ x )   d x E[X] = \int_{0}^{\infty} P(X > x) \, dx - \int_{-\infty}^{0} P(X \leq x) \, dx E [ X ] = ∫ 0 ∞ ​ P ( X > x ) d x − ∫ − ∞ 0 ​ P ( X ≤ x ) d x 。
收敛性条件 :公式成立要求 E[X] E [ X ] E[X] E [ X ] 存在(即积分收敛)。否则,右边积分可能发散。
💎 总结
非负随机变量的期望公式之所以成立,是因为它本质上是期望定义的积分变换形式 ,通过分部积分或积分交换揭示了期望与尾部概率的等价关系。这个公式在概率论、统计学和机器学习中广泛应用,例如:
简化计算 :当PDF复杂时,直接积分 P(X > x) P ( X > x ) P(X > x) P ( X > x ) 更便捷(如处理极值分布)。
理论推导 :用于证明马尔科夫不等式、分析风险模型等。
证明 \lim_{x \to \infty} x (1 - F(x)) = 0 lim ⁡ x → ∞ x ( 1 − F ( x ) ) = 0 \lim_{x \to \infty} x (1 - F(x)) = 0 lim x → ∞ ​ x ( 1 − F ( x )) = 0 (当 E[X] < \infty E [ X ] < ∞ E[X] < \infty E [ X ] < ∞ )
证明思路 :利用积分尾部的收敛性和不等式放缩。
证明步骤 :
由于 X X X X 是非负随机变量且 E[X] < \infty E [ X ] < ∞ E[X] < \infty E [ X ] < ∞ ,期望可表示为:
E[X] = \int_0^\infty t f(t) \, dt < \infty, E [ X ] = ∫ 0 ∞ t f ( t )   d t < ∞ , E[X] = \int_0^\infty t f(t) \, dt < \infty, E [ X ] = ∫ 0 ∞ ​ t f ( t ) d t < ∞ ,
其中 f(t) f ( t ) f(t) f ( t ) 是概率密度函数(对于离散随机变量,证明类似,将积分换为求和)。
考虑尾部期望:对于任意 x > 0 x > 0 x > 0 x > 0 ,有:
\int_x^\infty t f(t) \, dt \geq \int_x^\infty x f(t) \, dt = x \int_x^\infty f(t) \, dt = x (1 - F(x)). ∫ x ∞ t f ( t )   d t ≥ ∫ x ∞ x f ( t )   d t = x ∫ x ∞ f ( t )   d t = x ( 1 − F ( x ) ) . \int_x^\infty t f(t) \, dt \geq \int_x^\infty x f(t) \, dt = x \int_x^\infty f(t) \, dt = x (1 - F(x)). ∫ x ∞ ​ t f ( t ) d t ≥ ∫ x ∞ ​ x f ( t ) d t = x ∫ x ∞ ​ f ( t ) d t = x ( 1 − F ( x )) .
这里,不等式成立是因为在积分区间 [x, \infty) [ x , ∞ ) [x, \infty) [ x , ∞ ) 上,有 t \geq x t ≥ x t \geq x t ≥ x ,所以 t f(t) \geq x f(t) t f ( t ) ≥ x f ( t ) t f(t) \geq x f(t) t f ( t ) ≥ x f ( t ) 。
因此,我们得到:
0 \leq x (1 - F(x)) \leq \int_x^\infty t f(t) \, dt. 0 ≤ x ( 1 − F ( x ) ) ≤ ∫ x ∞ t f ( t )   d t . 0 \leq x (1 - F(x)) \leq \int_x^\infty t f(t) \, dt. 0 ≤ x ( 1 − F ( x )) ≤ ∫ x ∞ ​ t f ( t ) d t .
由于 E[X] < \infty E [ X ] < ∞ E[X] < \infty E [ X ] < ∞ ,积分 \int_0^\infty t f(t) \, dt ∫ 0 ∞ t f ( t )   d t \int_0^\infty t f(t) \, dt ∫ 0 ∞ ​ t f ( t ) d t 收敛,这意味着尾部积分趋于零:
\lim_{x \to \infty} \int_x^\infty t f(t) \, dt = 0. lim ⁡ x → ∞ ∫ x ∞ t f ( t )   d t = 0. \lim_{x \to \infty} \int_x^\infty t f(t) \, dt = 0. x → ∞ lim ​ ∫ x ∞ ​ t f ( t ) d t = 0.
由夹逼定理(squeeze theorem),有:
\lim_{x \to \infty} x (1 - F(x)) = 0. lim ⁡ x → ∞ x ( 1 − F ( x ) ) = 0. \lim_{x \to \infty} x (1 - F(x)) = 0. x → ∞ lim ​ x ( 1 − F ( x )) = 0.
证毕 。
💡 补充说明
这个证明适用于连续和离散随机变量(离散情况下,积分改为求和,同样有类似不等式)。
条件 E[X] < \infty E [ X ] < ∞ E[X] < \infty E [ X ] < ∞ 是必要的:如果 E[X] = \infty E [ X ] = ∞ E[X] = \infty E [ X ] = ∞ ,则 \lim_{x \to \infty} x (1 - F(x)) = 0 lim ⁡ x → ∞ x ( 1 − F ( x ) ) = 0 \lim_{x \to \infty} x (1 - F(x)) = 0 lim x → ∞ ​ x ( 1 − F ( x )) = 0 可能不成立(例如,帕累托分布当形状参数 \alpha \leq 1 α ≤ 1 \alpha \leq 1 α ≤ 1 时)。
在应用中,这个结果确保了非负随机变量期望公式 E[X] = \int_0^\infty P(X > x) \, dx E [ X ] = ∫ 0 ∞ P ( X > x )   d x E[X] = \int_0^\infty P(X > x) \, dx E [ X ] = ∫ 0 ∞ ​ P ( X > x ) d x 的正确性。
推导I_1=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}}) I 1 = e A + σ 2 x 2 N ( log ⁡ L − A − σ 2 T σ T ) − L N ( log ⁡ L − A σ T ) I_1=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}}) I 1 ​ = e A + 2 σ 2 x ​ N ( σ T ​ l o g L − A − σ 2 T ​ ) − L N ( σ T ​ l o g L − A ​ )
推导
I_1 = \int_0^L \mathrm{N}(-d_x) \, dx=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}}) I 1 = ∫ 0 L N ( − d x )   d x = e A + σ 2 x 2 N ( log ⁡ L − A − σ 2 T σ T ) − L N ( log ⁡ L − A σ T ) I_1 = \int_0^L \mathrm{N}(-d_x) \, dx=e^{A+\frac{σ^2x}{2}}N(\frac{\log L−A−σ^2T}{\sigma\sqrt{T}})−LN(\frac{\log L−A}{\sigma\sqrt{T}}) I 1 ​ = ∫ 0 L ​ N ( − d x ​ ) d x = e A + 2 σ 2 x ​ N ( σ T ​ log L − A − σ 2 T ​ ) − L N ( σ T ​ log L − A ​ )
其中,d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } d x = log ⁡ ( S ( 0 ) / x ) + μ T σ T d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } d x ​ = σ T ​ l o g ( S ( 0 ) / x ) + μ T ​ ,\mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,L = S_{\min} L = S min ⁡ L = S_{\min} L = S m i n ​ 是历史最小资产价格。最终目标是得到表达式:
I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 = e A + σ 2 T 2 N ( log ⁡ L − A − σ 2 T σ T ) − L N ( log ⁡ L − A σ T ) I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 ​ = e A + 2 σ 2 T ​ N ( σ T ​ log L − A − σ 2 T ​ ) − L N ( σ T ​ log L − A ​ )
其中 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T 。以下是详细推导。
步骤1: 表达积分并变量代换
积分:
I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 = ∫ 0 L N ( − d x )   d x I_1 = \int_0^L \mathrm{N}(-d_x) \, dx I 1 ​ = ∫ 0 L ​ N ( − d x ​ ) d x
首先,表达 d_x d x d_x d x ​ :
d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} } d x = log ⁡ ( S ( 0 ) / x ) + μ T σ T = log ⁡ S ( 0 ) − log ⁡ x + μ T σ T d_x = \frac{ \log(S(0)/x) + \mu T }{ \sigma \sqrt{T} } = \frac{ \log S(0) - \log x + \mu T }{ \sigma \sqrt{T} } d x ​ = σ T ​ log ( S ( 0 ) / x ) + μ T ​ = σ T ​ log S ( 0 ) − log x + μ T ​
令 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T ,则:
d_x = \frac{A - \log x}{\sigma \sqrt{T}} d x = A − log ⁡ x σ T d_x = \frac{A - \log x}{\sigma \sqrt{T}} d x ​ = σ T ​ A − log x ​
因此:
\mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) N ( − d x ) = N ( log ⁡ x − A σ T ) \mathrm{N}(-d_x) = \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) N ( − d x ​ ) = N ( σ T ​ log x − A ​ )
所以:
I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx I 1 = ∫ 0 L N ( log ⁡ x − A σ T ) d x I_1 = \int_0^L \mathrm{N}\left( \frac{\log x - A}{\sigma \sqrt{T}} \right) dx I 1 ​ = ∫ 0 L ​ N ( σ T ​ log x − A ​ ) d x
现在进行变量代换。令 y = \log x y = log ⁡ x y = \log x y = log x ,则 x = e^y x = e y x = e^y x = e y ,dx = e^y dy d x = e y d y dx = e^y dy d x = e y d y 。当 x x x x 从 0 到 L L L L ,y y y y 从 -\infty − ∞ -\infty − ∞ 到 \log L log ⁡ L \log L log L 。代入:
I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy I 1 = ∫ − ∞ log ⁡ L N ( y − A σ T ) e y d y I_1 = \int_{-\infty}^{\log L} \mathrm{N}\left( \frac{y - A}{\sigma \sqrt{T}} \right) e^y dy I 1 ​ = ∫ − ∞ l o g L ​ N ( σ T ​ y − A ​ ) e y d y
令 z = \frac{y - A}{\sigma \sqrt{T}} z = y − A σ T z = \frac{y - A}{\sigma \sqrt{T}} z = σ T ​ y − A ​ ,则 y = A + z \sigma \sqrt{T} y = A + z σ T y = A + z \sigma \sqrt{T} y = A + z σ T ​ ,dy = \sigma \sqrt{T} dz d y = σ T d z dy = \sigma \sqrt{T} dz d y = σ T ​ d z 。当 y = -\infty y = − ∞ y = -\infty y = − ∞ ,z = -\infty z = − ∞ z = -\infty z = − ∞ ; 当 y = \log L y = log ⁡ L y = \log L y = log L ,z = z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z = z 0 = log ⁡ L − A σ T z = z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z = z 0 ​ = σ T ​ l o g L − A ​ 。代入:
I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz I 1 = ∫ − ∞ z 0 N ( z ) e A + z σ T σ T d z = σ T e A ∫ − ∞ z 0 N ( z ) e z σ T d z I_1 = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{A + z \sigma \sqrt{T}} \sigma \sqrt{T} dz = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{z \sigma \sqrt{T}} dz I 1 ​ = ∫ − ∞ z 0 ​ ​ N ( z ) e A + z σ T ​ σ T ​ d z = σ T ​ e A ∫ − ∞ z 0 ​ ​ N ( z ) e z σ T ​ d z
令 c = \sigma \sqrt{T} c = σ T c = \sigma \sqrt{T} c = σ T ​ ,则:
I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz I 1 = σ T e A ∫ − ∞ z 0 N ( z ) e c z d z I_1 = \sigma \sqrt{T} e^{A} \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz I 1 ​ = σ T ​ e A ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
步骤2: 计算积分 \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz ∫ − ∞ z 0 N ( z ) e c z d z \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
计算积分:
J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz J = ∫ − ∞ z 0 N ( z ) e c z d z J = \int_{-\infty}^{z_0} \mathrm{N}(z) e^{c z} dz J = ∫ − ∞ z 0 ​ ​ N ( z ) e cz d z
利用交换积分次序的方法。注意 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt N ( z ) = ∫ − ∞ z ϕ ( t ) d t \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) dt N ( z ) = ∫ − ∞ z ​ ϕ ( t ) d t ,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 1 2 π e − t 2 / 2 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 2 π ​ 1 ​ e − t 2 /2 是标准正态密度函数。因此:
J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz J = ∫ − ∞ z 0 ( ∫ − ∞ z ϕ ( t ) d t ) e c z d z J = \int_{-\infty}^{z_0} \left( \int_{-\infty}^{z} \phi(t) dt \right) e^{c z} dz J = ∫ − ∞ z 0 ​ ​ ( ∫ − ∞ z ​ ϕ ( t ) d t ) e cz d z
交换积分次序:对于固定 t t t t ,z z z z 从 t t t t 到 z_0 z 0 z_0 z 0 ​ (因为当 z < t z < t z < t z < t 时,内层积分不贡献)。所以:
J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt J = ∫ − ∞ z 0 ϕ ( t ) ( ∫ t z 0 e c z d z ) d t J = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{c z} dz \right) dt J = ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( ∫ t z 0 ​ ​ e cz d z ) d t
计算内层积分:
\int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right] ∫ t z 0 e c z d z = 1 c [ e c z 0 − e c t ] \int_{t}^{z_0} e^{c z} dz = \frac{1}{c} \left[ e^{c z_0} - e^{c t} \right] ∫ t z 0 ​ ​ e cz d z = c 1 ​ [ e c z 0 ​ − e c t ]
代入:
J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt J = 1 c ∫ − ∞ z 0 ϕ ( t ) ( e c z 0 − e c t ) d t = 1 c e c z 0 ∫ − ∞ z 0 ϕ ( t ) d t − 1 c ∫ − ∞ z 0 ϕ ( t ) e c t d t J = \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) \left( e^{c z_0} - e^{c t} \right) dt = \frac{1}{c} e^{c z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{c} \int_{-\infty}^{z_0} \phi(t) e^{c t} dt J = c 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( e c z 0 ​ − e c t ) d t = c 1 ​ e c z 0 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t − c 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t
现在:
\int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ϕ ( t ) d t = N ( z 0 ) \int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t = N ( z 0 ​ )
计算 \int_{-\infty}^{z_0} \phi(t) e^{c t} dt ∫ − ∞ z 0 ϕ ( t ) e c t d t \int_{-\infty}^{z_0} \phi(t) e^{c t} dt ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t : 注意 \phi(t) e^{c t} = \frac{1}{\sqrt{2\pi}} e^{-t^2/2 + c t} = e^{c^2 / 2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(t - c)^2 / 2} = e^{c^2 / 2} \phi(t - c) ϕ ( t ) e c t = 1 2 π e − t 2 / 2 + c t = e c 2 / 2 ⋅ 1 2 π e − ( t − c ) 2 / 2 = e c 2 / 2 ϕ ( t − c ) \phi(t) e^{c t} = \frac{1}{\sqrt{2\pi}} e^{-t^2/2 + c t} = e^{c^2 / 2} \cdot \frac{1}{\sqrt{2\pi}} e^{-(t - c)^2 / 2} = e^{c^2 / 2} \phi(t - c) ϕ ( t ) e c t = 2 π ​ 1 ​ e − t 2 /2 + c t = e c 2 /2 ⋅ 2 π ​ 1 ​ e − ( t − c ) 2 /2 = e c 2 /2 ϕ ( t − c ) ,所以:
\int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c) ∫ − ∞ z 0 ϕ ( t ) e c t d t = e c 2 / 2 ∫ − ∞ z 0 ϕ ( t − c ) d t = e c 2 / 2 N ( z 0 − c ) \int_{-\infty}^{z_0} \phi(t) e^{c t} dt = e^{c^2 / 2} \int_{-\infty}^{z_0} \phi(t - c) dt = e^{c^2 / 2} \mathrm{N}(z_0 - c) ∫ − ∞ z 0 ​ ​ ϕ ( t ) e c t d t = e c 2 /2 ∫ − ∞ z 0 ​ ​ ϕ ( t − c ) d t = e c 2 /2 N ( z 0 ​ − c )
因此:
J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] J = 1 c [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] J = \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] J = c 1 ​ [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
步骤3: 代入回 I_1 I 1 I_1 I 1 ​
代入 J J J J 到 I_1 I 1 I_1 I 1 ​ :
I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 = σ T e A ⋅ 1 c [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] I_1 = \sigma \sqrt{T} e^{A} \cdot \frac{1}{c} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 ​ = σ T ​ e A ⋅ c 1 ​ [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
由于 c = \sigma \sqrt{T} c = σ T c = \sigma \sqrt{T} c = σ T ​ ,有 \sigma \sqrt{T} / c = 1 σ T / c = 1 \sigma \sqrt{T} / c = 1 σ T ​ / c = 1 ,所以:
I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 = e A [ e c z 0 N ( z 0 ) − e c 2 / 2 N ( z 0 − c ) ] I_1 = e^{A} \left[ e^{c z_0} \mathrm{N}(z_0) - e^{c^2 / 2} \mathrm{N}(z_0 - c) \right] I 1 ​ = e A [ e c z 0 ​ N ( z 0 ​ ) − e c 2 /2 N ( z 0 ​ − c ) ]
现在计算指数项:
c z_0 = \sigma \sqrt{T} \cdot \frac{\log L - A}{\sigma \sqrt{T}} = \log L - A c z 0 = σ T ⋅ log ⁡ L − A σ T = log ⁡ L − A c z_0 = \sigma \sqrt{T} \cdot \frac{\log L - A}{\sigma \sqrt{T}} = \log L - A c z 0 ​ = σ T ​ ⋅ σ T ​ l o g L − A ​ = log L − A ,所以 e^{c z_0} = e^{\log L - A} = L / e^{A} e c z 0 = e log ⁡ L − A = L / e A e^{c z_0} = e^{\log L - A} = L / e^{A} e c z 0 ​ = e l o g L − A = L / e A
e^{c^2 / 2} = e^{(\sigma^2 T) / 2} e c 2 / 2 = e ( σ 2 T ) / 2 e^{c^2 / 2} = e^{(\sigma^2 T) / 2} e c 2 /2 = e ( σ 2 T ) /2
z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 = log ⁡ L − A σ T z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 ​ = σ T ​ l o g L − A ​
z_0 - c = \frac{\log L - A}{\sigma \sqrt{T}} - \sigma \sqrt{T} = \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} z 0 − c = log ⁡ L − A σ T − σ T = log ⁡ L − A − σ 2 T σ T z_0 - c = \frac{\log L - A}{\sigma \sqrt{T}} - \sigma \sqrt{T} = \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} z 0 ​ − c = σ T ​ l o g L − A ​ − σ T ​ = σ T ​ l o g L − A − σ 2 T ​
代入:
I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) I 1 = e A [ L e A N ( z 0 ) − e σ 2 T / 2 N ( log ⁡ L − A − σ 2 T σ T ) ] = L N ( z 0 ) − e A + σ 2 T / 2 N ( log ⁡ L − A − σ 2 T σ T ) I_1 = e^{A} \left[ \frac{L}{e^{A}} \mathrm{N}(z_0) - e^{\sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) \right] = L \mathrm{N}(z_0) - e^{A + \sigma^2 T / 2} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) I 1 ​ = e A [ e A L ​ N ( z 0 ​ ) − e σ 2 T /2 N ( σ T ​ log L − A − σ 2 T ​ ) ] = L N ( z 0 ​ ) − e A + σ 2 T /2 N ( σ T ​ log L − A − σ 2 T ​ )
步骤4: 简化表达式
回忆 A = \log S(0) + \mu T A = log ⁡ S ( 0 ) + μ T A = \log S(0) + \mu T A = log S ( 0 ) + μ T 和 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,所以:
\begin{aligned}
A + \frac{\sigma^2 T}{2} &= \log S(0) + \mu T + \frac{\sigma^2 T}{2} \\
&= \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2}\\
&= \log S(0) + (r - q) T
\end{aligned} A + σ 2 T 2 = log ⁡ S ( 0 ) + μ T + σ 2 T 2 = log ⁡ S ( 0 ) + ( r − q − σ 2 2 ) T + σ 2 T 2 = log ⁡ S ( 0 ) + ( r − q ) T \begin{aligned}
A + \frac{\sigma^2 T}{2} &= \log S(0) + \mu T + \frac{\sigma^2 T}{2} \\
&= \log S(0) + (r - q - \frac{\sigma^2}{2}) T + \frac{\sigma^2 T}{2}\\
&= \log S(0) + (r - q) T
\end{aligned} A + 2 σ 2 T ​ ​ = log S ( 0 ) + μ T + 2 σ 2 T ​ = log S ( 0 ) + ( r − q − 2 σ 2 ​ ) T + 2 σ 2 T ​ = log S ( 0 ) + ( r − q ) T ​
因此:
e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T} e A + σ 2 T / 2 = e log ⁡ S ( 0 ) + ( r − q ) T = S ( 0 ) e ( r − q ) T e^{A + \sigma^2 T / 2} = e^{\log S(0) + (r - q) T} = S(0) e^{(r - q) T} e A + σ 2 T /2 = e l o g S ( 0 ) + ( r − q ) T = S ( 0 ) e ( r − q ) T
另外,z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 = log ⁡ L − A σ T z_0 = \frac{\log L - A}{\sigma \sqrt{T}} z 0 ​ = σ T ​ l o g L − A ​ ,所以最终:
I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 = e A + σ 2 T 2 N ( log ⁡ L − A − σ 2 T σ T ) − L N ( log ⁡ L − A σ T ) I_1 = e^{A + \frac{\sigma^2 T}{2}} \mathrm{N}\left( \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} \right) - L \mathrm{N}\left( \frac{\log L - A}{\sigma \sqrt{T}} \right) I 1 ​ = e A + 2 σ 2 T ​ N ( σ T ​ log L − A − σ 2 T ​ ) − L N ( σ T ​ log L − A ​ )
这就是所求的表达式。
步骤5: 与期权定价公式中的符号联系
在期权定价公式中,通常定义:
d_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 1 = log ⁡ ( S ( 0 ) / L ) + ( r − q + σ 2 / 2 ) T σ T d_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 1 ​ = σ T ​ l o g ( S ( 0 ) / L ) + ( r − q + σ 2 /2 ) T ​
d_2 = d_1 - \sigma \sqrt{T} = \frac{ \log(S(0)/L) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 2 = d 1 − σ T = log ⁡ ( S ( 0 ) / L ) + ( r − q − σ 2 / 2 ) T σ T d_2 = d_1 - \sigma \sqrt{T} = \frac{ \log(S(0)/L) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 2 ​ = d 1 ​ − σ T ​ = σ T ​ l o g ( S ( 0 ) / L ) + ( r − q − σ 2 /2 ) T ​
可以验证:
\frac{\log L - A}{\sigma \sqrt{T}} = \frac{ \log L - \log S(0) - \mu T }{ \sigma \sqrt{T} } = - \frac{ \log(S(0)/L) + \mu T }{ \sigma \sqrt{T} } = -d_2 log ⁡ L − A σ T = log ⁡ L − log ⁡ S ( 0 ) − μ T σ T = − log ⁡ ( S ( 0 ) / L ) + μ T σ T = − d 2 \frac{\log L - A}{\sigma \sqrt{T}} = \frac{ \log L - \log S(0) - \mu T }{ \sigma \sqrt{T} } = - \frac{ \log(S(0)/L) + \mu T }{ \sigma \sqrt{T} } = -d_2 σ T ​ l o g L − A ​ = σ T ​ l o g L − l o g S ( 0 ) − μ T ​ = − σ T ​ l o g ( S ( 0 ) / L ) + μ T ​ = − d 2 ​
\frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} = - \frac{ \log(S(0)/L) + \mu T + \sigma^2 T }{ \sigma \sqrt{T} } = -d_1 log ⁡ L − A − σ 2 T σ T = − log ⁡ ( S ( 0 ) / L ) + μ T + σ 2 T σ T = − d 1 \frac{\log L - A - \sigma^2 T}{\sigma \sqrt{T}} = - \frac{ \log(S(0)/L) + \mu T + \sigma^2 T }{ \sigma \sqrt{T} } = -d_1 σ T ​ l o g L − A − σ 2 T ​ = − σ T ​ l o g ( S ( 0 ) / L ) + μ T + σ 2 T ​ = − d 1 ​
因此:
I_1 = S(0) e^{(r - q) T} \mathrm{N}(-d_1) - L \mathrm{N}(-d_2) I 1 = S ( 0 ) e ( r − q ) T N ( − d 1 ) − L N ( − d 2 ) I_1 = S(0) e^{(r - q) T} \mathrm{N}(-d_1) - L \mathrm{N}(-d_2) I 1 ​ = S ( 0 ) e ( r − q ) T N ( − d 1 ​ ) − L N ( − d 2 ​ )
推导I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{(r-q)T} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 2 = σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 e ( r − q ) T S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) S ( 0 ) e ( r − q ) T N ( − d 1 ) I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} e^{(r-q)T} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 2 ​ = 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 e ( r − q ) T S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ S ( 0 ) e ( r − q ) T N ( − d 1 ​ )
详细推导积分 I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 = ∫ 0 L ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ )   d x I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 ​ = ∫ 0 L ​ ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ ) d x 的表达式。其中,\mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ = log ⁡ ( x / S ( 0 ) ) + μ T σ T d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ ​ = σ T ​ l o g ( x / S ( 0 )) + μ T ​ ,L = S_{\min} L = S min ⁡ L = S_{\min} L = S m i n ​ 是历史最小资产价格。最终目标是得到:
I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 2 = σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) S ( 0 ) e ( r − q ) T N ( − d 1 ) I_2 = \frac{\sigma^2}{2(r-q)} \left( \frac{L}{S(0)} \right)^{2(r-q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r-q)} S(0) e^{(r-q)T} \mathrm{N}(-d_1) I 2 ​ = 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ S ( 0 ) e ( r − q ) T N ( − d 1 ​ )
其中 d_1 d 1 d_1 d 1 ​ 和 d_2' d 2 ′ d_2' d 2 ′ ​ 的定义:
d_1 = \frac{ \log(S(0)/L) + (r-q+\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }, \quad d_2' = \frac{ \log(L/S(0)) + (r-q-\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} } d 1 = log ⁡ ( S ( 0 ) / L ) + ( r − q + 1 2 σ 2 ) T σ T , d 2 ′ = log ⁡ ( L / S ( 0 ) ) + ( r − q − 1 2 σ 2 ) T σ T d_1 = \frac{ \log(S(0)/L) + (r-q+\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} }, \quad d_2' = \frac{ \log(L/S(0)) + (r-q-\frac{1}{2}\sigma^2) T }{ \sigma \sqrt{T} } d 1 ​ = σ T ​ log ( S ( 0 ) / L ) + ( r − q + 2 1 ​ σ 2 ) T ​ , d 2 ′ ​ = σ T ​ log ( L / S ( 0 )) + ( r − q − 2 1 ​ σ 2 ) T ​
步骤1: 表达积分并进行变量代换
从积分开始:
I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 = ∫ 0 L ( x S ( 0 ) ) 2 μ / σ 2 N ( d x ′ )   d x I_2 = \int_0^L \left( \frac{x}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) \, dx I 2 ​ = ∫ 0 L ​ ( S ( 0 ) x ​ ) 2 μ / σ 2 N ( d x ′ ​ ) d x
其中 d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ = log ⁡ ( x / S ( 0 ) ) + μ T σ T d'_x = \frac{ \log(x/S(0)) + \mu T }{ \sigma \sqrt{T} } d x ′ ​ = σ T ​ l o g ( x / S ( 0 )) + μ T ​ .
令 y = \log x y = log ⁡ x y = \log x y = log x ,则 x = e^y x = e y x = e^y x = e y ,dx = e^y dy d x = e y d y dx = e^y dy d x = e y d y 。当 x x x x 从 0 到 L L L L ,y y y y 从 -\infty − ∞ -\infty − ∞ 到 \log L log ⁡ L \log L log L 。代入积分:
I_2 = \int_{-\infty}^{\log L} \left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) e^y \, dy I 2 = ∫ − ∞ log ⁡ L ( e y S ( 0 ) ) 2 μ / σ 2 N ( d x ′ ) e y   d y I_2 = \int_{-\infty}^{\log L} \left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} \mathrm{N}(d'_x) e^y \, dy I 2 ​ = ∫ − ∞ l o g L ​ ( S ( 0 ) e y ​ ) 2 μ / σ 2 N ( d x ′ ​ ) e y d y
简化:
\left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y / \sigma^2} S(0)^{-2\mu/\sigma^2} ( e y S ( 0 ) ) 2 μ / σ 2 = e 2 μ y / σ 2 S ( 0 ) − 2 μ / σ 2 \left( \frac{e^y}{S(0)} \right)^{2\mu/\sigma^2} = e^{2\mu y / \sigma^2} S(0)^{-2\mu/\sigma^2} ( S ( 0 ) e y ​ ) 2 μ / σ 2 = e 2 μ y / σ 2 S ( 0 ) − 2 μ / σ 2
所以:
I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}(d'_x) \, dy I 2 = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ log ⁡ L e y ( 1 + 2 μ / σ 2 ) N ( d x ′ )   d y I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{y (1 + 2\mu/\sigma^2)} \mathrm{N}(d'_x) \, dy I 2 ​ = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ l o g L ​ e y ( 1 + 2 μ / σ 2 ) N ( d x ′ ​ ) d y
现在,d'_x = \frac{ y - \log S(0) + \mu T }{ \sigma \sqrt{T} } d x ′ = y − log ⁡ S ( 0 ) + μ T σ T d'_x = \frac{ y - \log S(0) + \mu T }{ \sigma \sqrt{T} } d x ′ ​ = σ T ​ y − l o g S ( 0 ) + μ T ​ 。令 B = \log S(0) - \mu T B = log ⁡ S ( 0 ) − μ T B = \log S(0) - \mu T B = log S ( 0 ) − μ T ,则:
d'_x = \frac{y - B}{\sigma \sqrt{T}} d x ′ = y − B σ T d'_x = \frac{y - B}{\sigma \sqrt{T}} d x ′ ​ = σ T ​ y − B ​
令 c = 1 + \frac{2\mu}{\sigma^2} c = 1 + 2 μ σ 2 c = 1 + \frac{2\mu}{\sigma^2} c = 1 + σ 2 2 μ ​ ,则积分变为:
I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{c y} \mathrm{N}\left( \frac{y - B}{\sigma \sqrt{T}} \right) dy I 2 = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ log ⁡ L e c y N ( y − B σ T ) d y I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{\log L} e^{c y} \mathrm{N}\left( \frac{y - B}{\sigma \sqrt{T}} \right) dy I 2 ​ = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ l o g L ​ e cy N ( σ T ​ y − B ​ ) d y
步骤2: 变量代换并简化积分
令 z = \frac{y - B}{\sigma \sqrt{T}} z = y − B σ T z = \frac{y - B}{\sigma \sqrt{T}} z = σ T ​ y − B ​ ,则 y = B + z \sigma \sqrt{T} y = B + z σ T y = B + z \sigma \sqrt{T} y = B + z σ T ​ ,dy = \sigma \sqrt{T} dz d y = σ T d z dy = \sigma \sqrt{T} dz d y = σ T ​ d z 。当 y = -\infty y = − ∞ y = -\infty y = − ∞ ,z = -\infty z = − ∞ z = -\infty z = − ∞ ; 当 y = \log L y = log ⁡ L y = \log L y = log L ,z = z_0 = \frac{\log L - B}{\sigma \sqrt{T}} z = z 0 = log ⁡ L − B σ T z = z_0 = \frac{\log L - B}{\sigma \sqrt{T}} z = z 0 ​ = σ T ​ l o g L − B ​ . 代入:
I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{z_0} e^{c (B + z \sigma \sqrt{T})} \mathrm{N}(z) \sigma \sqrt{T} \, dz I 2 = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ z 0 e c ( B + z σ T ) N ( z ) σ T   d z I_2 = S(0)^{-2\mu/\sigma^2} \int_{-\infty}^{z_0} e^{c (B + z \sigma \sqrt{T})} \mathrm{N}(z) \sigma \sqrt{T} \, dz I 2 ​ = S ( 0 ) − 2 μ / σ 2 ∫ − ∞ z 0 ​ ​ e c ( B + z σ T ​ ) N ( z ) σ T ​ d z
简化:
I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{c z \sigma \sqrt{T}} \mathrm{N}(z) \, dz I 2 = S ( 0 ) − 2 μ / σ 2 e c B σ T ∫ − ∞ z 0 e c z σ T N ( z )   d z I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{c z \sigma \sqrt{T}} \mathrm{N}(z) \, dz I 2 ​ = S ( 0 ) − 2 μ / σ 2 e c B σ T ​ ∫ − ∞ z 0 ​ ​ e cz σ T ​ N ( z ) d z
令 k = c \sigma \sqrt{T} k = c σ T k = c \sigma \sqrt{T} k = c σ T ​ (无量纲),则:
I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz I 2 = S ( 0 ) − 2 μ / σ 2 e c B σ T ∫ − ∞ z 0 e k z N ( z )   d z I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz I 2 ​ = S ( 0 ) − 2 μ / σ 2 e c B σ T ​ ∫ − ∞ z 0 ​ ​ e k z N ( z ) d z
步骤3: 计算积分 \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz ∫ − ∞ z 0 e k z N ( z )   d z \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz ∫ − ∞ z 0 ​ ​ e k z N ( z ) d z
令 J = \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz J = ∫ − ∞ z 0 e k z N ( z )   d z J = \int_{-\infty}^{z_0} e^{k z} \mathrm{N}(z) \, dz J = ∫ − ∞ z 0 ​ ​ e k z N ( z ) d z . 使用交换积分次序的方法。因为 \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) \, dt N ( z ) = ∫ − ∞ z ϕ ( t )   d t \mathrm{N}(z) = \int_{-\infty}^{z} \phi(t) \, dt N ( z ) = ∫ − ∞ z ​ ϕ ( t ) d t ,其中 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 1 2 π e − t 2 / 2 \phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} ϕ ( t ) = 2 π ​ 1 ​ e − t 2 /2 是标准正态密度函数,所以:
J = \int_{-\infty}^{z_0} e^{k z} \left( \int_{-\infty}^{z} \phi(t) \, dt \right) dz = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{k z} dz \right) dt J = ∫ − ∞ z 0 e k z ( ∫ − ∞ z ϕ ( t )   d t ) d z = ∫ − ∞ z 0 ϕ ( t ) ( ∫ t z 0 e k z d z ) d t J = \int_{-\infty}^{z_0} e^{k z} \left( \int_{-\infty}^{z} \phi(t) \, dt \right) dz = \int_{-\infty}^{z_0} \phi(t) \left( \int_{t}^{z_0} e^{k z} dz \right) dt J = ∫ − ∞ z 0 ​ ​ e k z ( ∫ − ∞ z ​ ϕ ( t ) d t ) d z = ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( ∫ t z 0 ​ ​ e k z d z ) d t
计算内层积分:
\int_{t}^{z_0} e^{k z} dz = \frac{1}{k} \left[ e^{k z_0} - e^{k t} \right] ∫ t z 0 e k z d z = 1 k [ e k z 0 − e k t ] \int_{t}^{z_0} e^{k z} dz = \frac{1}{k} \left[ e^{k z_0} - e^{k t} \right] ∫ t z 0 ​ ​ e k z d z = k 1 ​ [ e k z 0 ​ − e k t ]
所以:
J = \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) \left( e^{k z_0} - e^{k t} \right) dt = \frac{1}{k} e^{k z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) e^{k t} dt J = 1 k ∫ − ∞ z 0 ϕ ( t ) ( e k z 0 − e k t ) d t = 1 k e k z 0 ∫ − ∞ z 0 ϕ ( t ) d t − 1 k ∫ − ∞ z 0 ϕ ( t ) e k t d t J = \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) \left( e^{k z_0} - e^{k t} \right) dt = \frac{1}{k} e^{k z_0} \int_{-\infty}^{z_0} \phi(t) dt - \frac{1}{k} \int_{-\infty}^{z_0} \phi(t) e^{k t} dt J = k 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) ( e k z 0 ​ − e k t ) d t = k 1 ​ e k z 0 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t − k 1 ​ ∫ − ∞ z 0 ​ ​ ϕ ( t ) e k t d t
其中:
\int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ϕ ( t ) d t = N ( z 0 ) \int_{-\infty}^{z_0} \phi(t) dt = \mathrm{N}(z_0) ∫ − ∞ z 0 ​ ​ ϕ ( t ) d t = N ( z 0 ​ )
\int_{-\infty}^{z_0} \phi(t) e^{k t} dt = e^{k^2 / 2} \mathrm{N}(z_0 - k) ∫ − ∞ z 0 ϕ ( t ) e k t d t = e k 2 / 2 N ( z 0 − k ) \int_{-\infty}^{z_0} \phi(t) e^{k t} dt = e^{k^2 / 2} \mathrm{N}(z_0 - k) ∫ − ∞ z 0 ​ ​ ϕ ( t ) e k t d t = e k 2 /2 N ( z 0 ​ − k ) (因为 \phi(t) e^{k t} = e^{k^2 / 2} \phi(t - k) ϕ ( t ) e k t = e k 2 / 2 ϕ ( t − k ) \phi(t) e^{k t} = e^{k^2 / 2} \phi(t - k) ϕ ( t ) e k t = e k 2 /2 ϕ ( t − k ) )
因此:
J = \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] J = 1 k [ e k z 0 N ( z 0 ) − e k 2 / 2 N ( z 0 − k ) ] J = \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] J = k 1 ​ [ e k z 0 ​ N ( z 0 ​ ) − e k 2 /2 N ( z 0 ​ − k ) ]
步骤4: 代入回 I_2 I 2 I_2 I 2 ​
代入 J J J J 到 I_2 I 2 I_2 I 2 ​ :
I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \cdot \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 = S ( 0 ) − 2 μ / σ 2 e c B σ T ⋅ 1 k [ e k z 0 N ( z 0 ) − e k 2 / 2 N ( z 0 − k ) ] I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \sigma \sqrt{T} \cdot \frac{1}{k} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 ​ = S ( 0 ) − 2 μ / σ 2 e c B σ T ​ ⋅ k 1 ​ [ e k z 0 ​ N ( z 0 ​ ) − e k 2 /2 N ( z 0 ​ − k ) ]
由于 k = c \sigma \sqrt{T} k = c σ T k = c \sigma \sqrt{T} k = c σ T ​ ,有 \sigma \sqrt{T} / k = 1 / c σ T / k = 1 / c \sigma \sqrt{T} / k = 1 / c σ T ​ / k = 1/ c ,所以:
I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \frac{1}{c} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 = S ( 0 ) − 2 μ / σ 2 e c B 1 c [ e k z 0 N ( z 0 ) − e k 2 / 2 N ( z 0 − k ) ] I_2 = S(0)^{-2\mu/\sigma^2} e^{c B} \frac{1}{c} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 ​ = S ( 0 ) − 2 μ / σ 2 e c B c 1 ​ [ e k z 0 ​ N ( z 0 ​ ) − e k 2 /2 N ( z 0 ​ − k ) ]
步骤5: 简化指数项
现在简化各项表达式:
计算 S(0)^{-2\mu/\sigma^2} e^{c B} S ( 0 ) − 2 μ / σ 2 e c B S(0)^{-2\mu/\sigma^2} e^{c B} S ( 0 ) − 2 μ / σ 2 e c B :
B = \log S(0) - \mu T, \quad c = 1 + \frac{2\mu}{\sigma^2} B = log ⁡ S ( 0 ) − μ T , c = 1 + 2 μ σ 2 B = \log S(0) - \mu T, \quad c = 1 + \frac{2\mu}{\sigma^2} B = log S ( 0 ) − μ T , c = 1 + σ 2 2 μ ​
e^{c B} = e^{c (\log S(0) - \mu T)} = S(0)^c e^{-c \mu T} e c B = e c ( log ⁡ S ( 0 ) − μ T ) = S ( 0 ) c e − c μ T e^{c B} = e^{c (\log S(0) - \mu T)} = S(0)^c e^{-c \mu T} e c B = e c ( l o g S ( 0 ) − μ T ) = S ( 0 ) c e − c μ T
S(0)^{-2\mu/\sigma^2} e^{c B} = S(0)^{-2\mu/\sigma^2} S(0)^c e^{-c \mu T} = S(0)^{c - 2\mu/\sigma^2} e^{-c \mu T} S ( 0 ) − 2 μ / σ 2 e c B = S ( 0 ) − 2 μ / σ 2 S ( 0 ) c e − c μ T = S ( 0 ) c − 2 μ / σ 2 e − c μ T S(0)^{-2\mu/\sigma^2} e^{c B} = S(0)^{-2\mu/\sigma^2} S(0)^c e^{-c \mu T} = S(0)^{c - 2\mu/\sigma^2} e^{-c \mu T} S ( 0 ) − 2 μ / σ 2 e c B = S ( 0 ) − 2 μ / σ 2 S ( 0 ) c e − c μ T = S ( 0 ) c − 2 μ / σ 2 e − c μ T
由于 c = 1 + \frac{2\mu}{\sigma^2} c = 1 + 2 μ σ 2 c = 1 + \frac{2\mu}{\sigma^2} c = 1 + σ 2 2 μ ​ ,有 c - \frac{2\mu}{\sigma^2} = 1 c − 2 μ σ 2 = 1 c - \frac{2\mu}{\sigma^2} = 1 c − σ 2 2 μ ​ = 1 ,所以:
S(0)^{-2\mu/\sigma^2} e^{c B} = S(0) e^{-c \mu T} S ( 0 ) − 2 μ / σ 2 e c B = S ( 0 ) e − c μ T S(0)^{-2\mu/\sigma^2} e^{c B} = S(0) e^{-c \mu T} S ( 0 ) − 2 μ / σ 2 e c B = S ( 0 ) e − c μ T
因此:
I_2 = \frac{1}{c} S(0) e^{-c \mu T} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 = 1 c S ( 0 ) e − c μ T [ e k z 0 N ( z 0 ) − e k 2 / 2 N ( z 0 − k ) ] I_2 = \frac{1}{c} S(0) e^{-c \mu T} \left[ e^{k z_0} \mathrm{N}(z_0) - e^{k^2 / 2} \mathrm{N}(z_0 - k) \right] I 2 ​ = c 1 ​ S ( 0 ) e − c μ T [ e k z 0 ​ N ( z 0 ​ ) − e k 2 /2 N ( z 0 ​ − k ) ]
计算 e^{k z_0} e k z 0 e^{k z_0} e k z 0 ​ :
k z_0 = c \sigma \sqrt{T} \cdot \frac{\log L - B}{\sigma \sqrt{T}} = c (\log L - B) k z 0 = c σ T ⋅ log ⁡ L − B σ T = c ( log ⁡ L − B ) k z_0 = c \sigma \sqrt{T} \cdot \frac{\log L - B}{\sigma \sqrt{T}} = c (\log L - B) k z 0 ​ = c σ T ​ ⋅ σ T ​ log L − B ​ = c ( log L − B )
e^{k z_0} = e^{c (\log L - B)} = L^c e^{-c B} = L^c S(0)^{-c} e^{c \mu T} e k z 0 = e c ( log ⁡ L − B ) = L c e − c B = L c S ( 0 ) − c e c μ T e^{k z_0} = e^{c (\log L - B)} = L^c e^{-c B} = L^c S(0)^{-c} e^{c \mu T} e k z 0 ​ = e c ( l o g L − B ) = L c e − c B = L c S ( 0 ) − c e c μ T
所以:
e^{-c \mu T} e^{k z_0} = e^{-c \mu T} L^c S(0)^{-c} e^{c \mu T} = \left( \frac{L}{S(0)} \right)^c e − c μ T e k z 0 = e − c μ T L c S ( 0 ) − c e c μ T = ( L S ( 0 ) ) c e^{-c \mu T} e^{k z_0} = e^{-c \mu T} L^c S(0)^{-c} e^{c \mu T} = \left( \frac{L}{S(0)} \right)^c e − c μ T e k z 0 ​ = e − c μ T L c S ( 0 ) − c e c μ T = ( S ( 0 ) L ​ ) c
计算 e^{-c \mu T} e^{k^2 / 2} e − c μ T e k 2 / 2 e^{-c \mu T} e^{k^2 / 2} e − c μ T e k 2 /2 :
k^2 = (c \sigma \sqrt{T})^2 = c^2 \sigma^2 T k 2 = ( c σ T ) 2 = c 2 σ 2 T k^2 = (c \sigma \sqrt{T})^2 = c^2 \sigma^2 T k 2 = ( c σ T ​ ) 2 = c 2 σ 2 T
e^{k^2 / 2} = e^{c^2 \sigma^2 T / 2} e k 2 / 2 = e c 2 σ 2 T / 2 e^{k^2 / 2} = e^{c^2 \sigma^2 T / 2} e k 2 /2 = e c 2 σ 2 T /2
e^{-c \mu T} e^{k^2 / 2} = e^{-c \mu T + c^2 \sigma^2 T / 2} = e^{c T ( - \mu + c \sigma^2 / 2 )} e − c μ T e k 2 / 2 = e − c μ T + c 2 σ 2 T / 2 = e c T ( − μ + c σ 2 / 2 ) e^{-c \mu T} e^{k^2 / 2} = e^{-c \mu T + c^2 \sigma^2 T / 2} = e^{c T ( - \mu + c \sigma^2 / 2 )} e − c μ T e k 2 /2 = e − c μ T + c 2 σ 2 T /2 = e c T ( − μ + c σ 2 /2 )
计算 - \mu + c \sigma^2 / 2 − μ + c σ 2 / 2 - \mu + c \sigma^2 / 2 − μ + c σ 2 /2 :
c = 1 + \frac{2\mu}{\sigma^2} \implies c \sigma^2 / 2 = \frac{\sigma^2}{2} + \mu c = 1 + 2 μ σ 2    ⟹    c σ 2 / 2 = σ 2 2 + μ c = 1 + \frac{2\mu}{\sigma^2} \implies c \sigma^2 / 2 = \frac{\sigma^2}{2} + \mu c = 1 + σ 2 2 μ ​ ⟹ c σ 2 /2 = 2 σ 2 ​ + μ
- \mu + c \sigma^2 / 2 = - \mu + \frac{\sigma^2}{2} + \mu = \frac{\sigma^2}{2} − μ + c σ 2 / 2 = − μ + σ 2 2 + μ = σ 2 2 - \mu + c \sigma^2 / 2 = - \mu + \frac{\sigma^2}{2} + \mu = \frac{\sigma^2}{2} − μ + c σ 2 /2 = − μ + 2 σ 2 ​ + μ = 2 σ 2 ​
所以:
e^{-c \mu T} e^{k^2 / 2} = e^{c T \cdot \sigma^2 / 2} = e^{c \sigma^2 T / 2} e − c μ T e k 2 / 2 = e c T ⋅ σ 2 / 2 = e c σ 2 T / 2 e^{-c \mu T} e^{k^2 / 2} = e^{c T \cdot \sigma^2 / 2} = e^{c \sigma^2 T / 2} e − c μ T e k 2 /2 = e c T ⋅ σ 2 /2 = e c σ 2 T /2
代入回 I_2 I 2 I_2 I 2 ​ :
I_2 = \frac{1}{c} S(0) \left[ \left( \frac{L}{S(0)} \right)^c \mathrm{N}(z_0) - e^{c \sigma^2 T / 2} \mathrm{N}(z_0 - k) \right] I 2 = 1 c S ( 0 ) [ ( L S ( 0 ) ) c N ( z 0 ) − e c σ 2 T / 2 N ( z 0 − k ) ] I_2 = \frac{1}{c} S(0) \left[ \left( \frac{L}{S(0)} \right)^c \mathrm{N}(z_0) - e^{c \sigma^2 T / 2} \mathrm{N}(z_0 - k) \right] I 2 ​ = c 1 ​ S ( 0 ) [ ( S ( 0 ) L ​ ) c N ( z 0 ​ ) − e c σ 2 T /2 N ( z 0 ​ − k ) ]
步骤6: 代入 c c c c 并简化
现在代入 c c c c 的具体值。由于 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,有:
\frac{2\mu}{\sigma^2} = \frac{2(r - q - \sigma^2 / 2)}{\sigma^2} = \frac{2(r - q)}{\sigma^2} - 1 2 μ σ 2 = 2 ( r − q − σ 2 / 2 ) σ 2 = 2 ( r − q ) σ 2 − 1 \frac{2\mu}{\sigma^2} = \frac{2(r - q - \sigma^2 / 2)}{\sigma^2} = \frac{2(r - q)}{\sigma^2} - 1 σ 2 2 μ ​ = σ 2 2 ( r − q − σ 2 /2 ) ​ = σ 2 2 ( r − q ) ​ − 1
所以:
c = 1 + \frac{2\mu}{\sigma^2} = 1 + \frac{2(r - q)}{\sigma^2} - 1 = \frac{2(r - q)}{\sigma^2} c = 1 + 2 μ σ 2 = 1 + 2 ( r − q ) σ 2 − 1 = 2 ( r − q ) σ 2 c = 1 + \frac{2\mu}{\sigma^2} = 1 + \frac{2(r - q)}{\sigma^2} - 1 = \frac{2(r - q)}{\sigma^2} c = 1 + σ 2 2 μ ​ = 1 + σ 2 2 ( r − q ) ​ − 1 = σ 2 2 ( r − q ) ​
因此:
\left( \frac{L}{S(0)} \right)^c = \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} ( L S ( 0 ) ) c = ( L S ( 0 ) ) 2 ( r − q ) / σ 2 \left( \frac{L}{S(0)} \right)^c = \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} ( S ( 0 ) L ​ ) c = ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2
e^{c \sigma^2 T / 2} = e^{ \frac{2(r - q)}{\sigma^2} \cdot \frac{\sigma^2 T}{2} } = e^{(r - q) T} e c σ 2 T / 2 = e 2 ( r − q ) σ 2 ⋅ σ 2 T 2 = e ( r − q ) T e^{c \sigma^2 T / 2} = e^{ \frac{2(r - q)}{\sigma^2} \cdot \frac{\sigma^2 T}{2} } = e^{(r - q) T} e c σ 2 T /2 = e σ 2 2 ( r − q ) ​ ⋅ 2 σ 2 T ​ = e ( r − q ) T
\frac{1}{c} = \frac{\sigma^2}{2(r - q)} 1 c = σ 2 2 ( r − q ) \frac{1}{c} = \frac{\sigma^2}{2(r - q)} c 1 ​ = 2 ( r − q ) σ 2 ​
所以:
I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(z_0) - e^{(r - q) T} \mathrm{N}(z_0 - k) \right] I 2 = σ 2 2 ( r − q ) S ( 0 ) [ ( L S ( 0 ) ) 2 ( r − q ) / σ 2 N ( z 0 ) − e ( r − q ) T N ( z 0 − k ) ] I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(z_0) - e^{(r - q) T} \mathrm{N}(z_0 - k) \right] I 2 ​ = 2 ( r − q ) σ 2 ​ S ( 0 ) [ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 N ( z 0 ​ ) − e ( r − q ) T N ( z 0 ​ − k ) ]
步骤7: 将 z_0 z 0 z_0 z 0 ​ 和 z_0 - k z 0 − k z_0 - k z 0 ​ − k 表示为标准形式
现在表达 z_0 z 0 z_0 z 0 ​ 和 z_0 - k z 0 − k z_0 - k z 0 ​ − k 使用 d_1 d 1 d_1 d 1 ​ 和 d_2' d 2 ′ d_2' d 2 ′ ​ :
z_0 = \frac{\log L - B}{\sigma \sqrt{T}} = \frac{\log L - (\log S(0) - \mu T)}{\sigma \sqrt{T}} = \frac{\log(L/S(0)) + \mu T}{\sigma \sqrt{T}} z 0 = log ⁡ L − B σ T = log ⁡ L − ( log ⁡ S ( 0 ) − μ T ) σ T = log ⁡ ( L / S ( 0 ) ) + μ T σ T z_0 = \frac{\log L - B}{\sigma \sqrt{T}} = \frac{\log L - (\log S(0) - \mu T)}{\sigma \sqrt{T}} = \frac{\log(L/S(0)) + \mu T}{\sigma \sqrt{T}} z 0 ​ = σ T ​ l o g L − B ​ = σ T ​ l o g L − ( l o g S ( 0 ) − μ T ) ​ = σ T ​ l o g ( L / S ( 0 )) + μ T ​ 由于 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 ,所以:
z_0 = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } = d_2' z 0 = log ⁡ ( L / S ( 0 ) ) + ( r − q − σ 2 / 2 ) T σ T = d 2 ′ z_0 = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } = d_2' z 0 ​ = σ T ​ log ( L / S ( 0 )) + ( r − q − σ 2 /2 ) T ​ = d 2 ′ ​
其中 d_2' = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 2 ′ = log ⁡ ( L / S ( 0 ) ) + ( r − q − σ 2 / 2 ) T σ T d_2' = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 2 ′ ​ = σ T ​ l o g ( L / S ( 0 )) + ( r − q − σ 2 /2 ) T ​ (从图片定义)。
计算 z_0 - k z 0 − k z_0 - k z 0 ​ − k :
z_0 - k = d_2' - c \sigma \sqrt{T} = d_2' - \frac{2(r - q)}{\sigma^2} \sigma \sqrt{T} = d_2' - \frac{2(r - q) \sqrt{T}}{\sigma} z 0 − k = d 2 ′ − c σ T = d 2 ′ − 2 ( r − q ) σ 2 σ T = d 2 ′ − 2 ( r − q ) T σ z_0 - k = d_2' - c \sigma \sqrt{T} = d_2' - \frac{2(r - q)}{\sigma^2} \sigma \sqrt{T} = d_2' - \frac{2(r - q) \sqrt{T}}{\sigma} z 0 ​ − k = d 2 ′ ​ − c σ T ​ = d 2 ′ ​ − σ 2 2 ( r − q ) ​ σ T ​ = d 2 ′ ​ − σ 2 ( r − q ) T ​ ​
但更直接地,从表达式:
z_0 - k = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } - c \sigma \sqrt{T} z 0 − k = log ⁡ ( L / S ( 0 ) ) + μ T σ T − c σ T z_0 - k = \frac{ \log(L/S(0)) + \mu T }{ \sigma \sqrt{T} } - c \sigma \sqrt{T} z 0 ​ − k = σ T ​ log ( L / S ( 0 )) + μ T ​ − c σ T ​
代入 c = \frac{2(r - q)}{\sigma^2} c = 2 ( r − q ) σ 2 c = \frac{2(r - q)}{\sigma^2} c = σ 2 2 ( r − q ) ​ 和 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 / 2 \mu = r - q - \sigma^2 / 2 μ = r − q − σ 2 /2 :
z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } - \frac{2(r - q) T}{\sigma \sqrt{T}} z 0 − k = log ⁡ ( L / S ( 0 ) ) + ( r − q − σ 2 / 2 ) T σ T − 2 ( r − q ) T σ T z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T }{ \sigma \sqrt{T} } - \frac{2(r - q) T}{\sigma \sqrt{T}} z 0 ​ − k = σ T ​ log ( L / S ( 0 )) + ( r − q − σ 2 /2 ) T ​ − σ T ​ 2 ( r − q ) T ​
合并分子:
z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T - 2(r - q) T }{ \sigma \sqrt{T} } = \frac{ \log(L/S(0)) - (r - q) T - \sigma^2 T / 2 }{ \sigma \sqrt{T} } z 0 − k = log ⁡ ( L / S ( 0 ) ) + ( r − q − σ 2 / 2 ) T − 2 ( r − q ) T σ T = log ⁡ ( L / S ( 0 ) ) − ( r − q ) T − σ 2 T / 2 σ T z_0 - k = \frac{ \log(L/S(0)) + (r - q - \sigma^2 / 2) T - 2(r - q) T }{ \sigma \sqrt{T} } = \frac{ \log(L/S(0)) - (r - q) T - \sigma^2 T / 2 }{ \sigma \sqrt{T} } z 0 ​ − k = σ T ​ log ( L / S ( 0 )) + ( r − q − σ 2 /2 ) T − 2 ( r − q ) T ​ = σ T ​ log ( L / S ( 0 )) − ( r − q ) T − σ 2 T /2 ​
= - \frac{ \log(S(0)/L) + (r - q) T + \sigma^2 T / 2 }{ \sigma \sqrt{T} } = - d_1 = − log ⁡ ( S ( 0 ) / L ) + ( r − q ) T + σ 2 T / 2 σ T = − d 1 = - \frac{ \log(S(0)/L) + (r - q) T + \sigma^2 T / 2 }{ \sigma \sqrt{T} } = - d_1 = − σ T ​ log ( S ( 0 ) / L ) + ( r − q ) T + σ 2 T /2 ​ = − d 1 ​
其中 d_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 1 = log ⁡ ( S ( 0 ) / L ) + ( r − q + σ 2 / 2 ) T σ T d_1 = \frac{ \log(S(0)/L) + (r - q + \sigma^2 / 2) T }{ \sigma \sqrt{T} } d 1 ​ = σ T ​ l o g ( S ( 0 ) / L ) + ( r − q + σ 2 /2 ) T ​ .
因此:
\mathrm{N}(z_0) = \mathrm{N}(d_2') N ( z 0 ) = N ( d 2 ′ ) \mathrm{N}(z_0) = \mathrm{N}(d_2') N ( z 0 ​ ) = N ( d 2 ′ ​ )
\mathrm{N}(z_0 - k) = \mathrm{N}(-d_1) N ( z 0 − k ) = N ( − d 1 ) \mathrm{N}(z_0 - k) = \mathrm{N}(-d_1) N ( z 0 ​ − k ) = N ( − d 1 ​ )
代入回 I_2 I 2 I_2 I 2 ​ :
I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(d_2') - e^{(r - q) T} \mathrm{N}(-d_1) \right] I 2 = σ 2 2 ( r − q ) S ( 0 ) [ ( L S ( 0 ) ) 2 ( r − q ) / σ 2 N ( d 2 ′ ) − e ( r − q ) T N ( − d 1 ) ] I_2 = \frac{\sigma^2}{2(r - q)} S(0) \left[ \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} \mathrm{N}(d_2') - e^{(r - q) T} \mathrm{N}(-d_1) \right] I 2 ​ = 2 ( r − q ) σ 2 ​ S ( 0 ) [ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 N ( d 2 ′ ​ ) − e ( r − q ) T N ( − d 1 ​ ) ]
即:
I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1) I 2 = σ 2 2 ( r − q ) ( L S ( 0 ) ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ) − σ 2 2 ( r − q ) S ( 0 ) e ( r − q ) T N ( − d 1 ) I_2 = \frac{\sigma^2}{2(r - q)} \left( \frac{L}{S(0)} \right)^{2(r - q)/\sigma^2} S(0) \mathrm{N}(d_2') - \frac{\sigma^2}{2(r - q)} S(0) e^{(r - q) T} \mathrm{N}(-d_1) I 2 ​ = 2 ( r − q ) σ 2 ​ ( S ( 0 ) L ​ ) 2 ( r − q ) / σ 2 S ( 0 ) N ( d 2 ′ ​ ) − 2 ( r − q ) σ 2 ​ S ( 0 ) e ( r − q ) T N ( − d 1 ​ )